Show commands: SageMath
Rank
The elliptic curves in class 121380.k have rank \(1\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 121380.k do not have complex multiplication.Modular form 121380.2.a.k
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 121380.k
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
121380.k1 | 121380o3 | \([0, -1, 0, -87085, -9107150]\) | \(189123395584/16078125\) | \(6209389625250000\) | \([2]\) | \(995328\) | \(1.7718\) | |
121380.k2 | 121380o1 | \([0, -1, 0, -17725, 911902]\) | \(1594753024/4725\) | \(1824800216400\) | \([2]\) | \(331776\) | \(1.2225\) | \(\Gamma_0(N)\)-optimal |
121380.k3 | 121380o2 | \([0, -1, 0, -10500, 1654632]\) | \(-20720464/178605\) | \(-1103639170878720\) | \([2]\) | \(663552\) | \(1.5691\) | |
121380.k4 | 121380o4 | \([0, -1, 0, 93540, -42125400]\) | \(14647977776/132355125\) | \(-817851126320928000\) | \([2]\) | \(1990656\) | \(2.1184\) |