sage:E = EllipticCurve("k1")
E.isogeny_class()
sage:E.rank()
The elliptic curve 12138.k1 has
rank \(0\).
| |
| Bad L-factors: |
| Prime |
L-Factor |
| \(2\) | \(1 + T\) |
| \(3\) | \(1 - T\) |
| \(7\) | \(1 + T\) |
| \(17\) | \(1\) |
|
| |
| Good L-factors: |
| Prime |
L-Factor |
Isogeny Class over \(\mathbb{F}_p\) |
| \(5\) |
\( 1 + T + 5 T^{2}\) |
1.5.b
|
| \(11\) |
\( 1 + 5 T + 11 T^{2}\) |
1.11.f
|
| \(13\) |
\( 1 + T + 13 T^{2}\) |
1.13.b
|
| \(19\) |
\( 1 + 6 T + 19 T^{2}\) |
1.19.g
|
| \(23\) |
\( 1 + 6 T + 23 T^{2}\) |
1.23.g
|
| \(29\) |
\( 1 + 6 T + 29 T^{2}\) |
1.29.g
|
| $\cdots$ | $\cdots$ | $\cdots$ |
|
| |
| See L-function page for more information |
The elliptic curves in class 12138.k do not have complex multiplication.
sage:E.q_eigenform(10)
Elliptic curves in class 12138.k
sage:E.isogeny_class().curves