Properties

Label 12138.bb
Number of curves $4$
Conductor $12138$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 12138.bb have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(7\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 12138.bb do not have complex multiplication.

Modular form 12138.2.a.bb

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + 2 q^{5} + q^{6} + q^{7} + q^{8} + q^{9} + 2 q^{10} + q^{12} - 6 q^{13} + q^{14} + 2 q^{15} + q^{16} + q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 12138.bb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
12138.bb1 12138ba4 \([1, 0, 0, -1467837, 684363897]\) \(14489843500598257/6246072\) \(150764993878968\) \([2]\) \(221184\) \(2.0632\)  
12138.bb2 12138ba3 \([1, 0, 0, -196237, -17702647]\) \(34623662831857/14438442312\) \(348508897558419528\) \([2]\) \(221184\) \(2.0632\)  
12138.bb3 12138ba2 \([1, 0, 0, -92197, 10575425]\) \(3590714269297/73410624\) \(1771954002133056\) \([2, 2]\) \(110592\) \(1.7166\)  
12138.bb4 12138ba1 \([1, 0, 0, 283, 495105]\) \(103823/4386816\) \(-105887073890304\) \([2]\) \(55296\) \(1.3700\) \(\Gamma_0(N)\)-optimal