Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-248263722x-1495363594140\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-248263722xz^2-1495363594140z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-321749783739x-69766718598844650\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-9198, 104634)$ | $4.7919302403351336048582581719$ | $\infty$ |
$(-8476, 4238)$ | $0$ | $2$ |
$(18180, -9090)$ | $0$ | $2$ |
Integral points
\( \left(-9198, 104634\right) \), \( \left(-9198, -95436\right) \), \( \left(-8476, 4238\right) \), \( \left(18180, -9090\right) \)
Invariants
Conductor: | $N$ | = | \( 12138 \) | = | $2 \cdot 3 \cdot 7 \cdot 17^{2}$ |
|
Discriminant: | $\Delta$ | = | $13335258025968770331349056$ | = | $2^{6} \cdot 3^{16} \cdot 7^{4} \cdot 17^{10} $ |
|
j-invariant: | $j$ | = | \( \frac{70108386184777836280897}{552468975892674624} \) | = | $2^{-6} \cdot 3^{-16} \cdot 7^{-4} \cdot 17^{-4} \cdot 41234113^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.6491620510711531479509583693$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.2325553790430451078261910604$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.07814467781823$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $7.401413933680872$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.7919302403351336048582581719$ |
|
Real period: | $\Omega$ | ≈ | $0.038052010781995546916856521541$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 768 $ = $ ( 2 \cdot 3 )\cdot2^{4}\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $8.7524438962465447853615523108 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.752443896 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.038052 \cdot 4.791930 \cdot 768}{4^2} \\ & \approx 8.752443896\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 4423680 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
$3$ | $16$ | $I_{16}$ | split multiplicative | -1 | 1 | 16 | 16 |
$7$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$17$ | $4$ | $I_{4}^{*}$ | additive | 1 | 2 | 10 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 8.96.0.110 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 136 = 2^{3} \cdot 17 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 31 & 128 \\ 124 & 103 \end{array}\right),\left(\begin{array}{rr} 7 & 40 \\ 22 & 121 \end{array}\right),\left(\begin{array}{rr} 3 & 106 \\ 98 & 131 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 129 & 8 \\ 128 & 9 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 132 & 133 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[136])$ is a degree-$626688$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/136\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 289 = 17^{2} \) |
$3$ | split multiplicative | $4$ | \( 2023 = 7 \cdot 17^{2} \) |
$7$ | nonsplit multiplicative | $8$ | \( 1734 = 2 \cdot 3 \cdot 17^{2} \) |
$17$ | additive | $162$ | \( 42 = 2 \cdot 3 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 12138.ba
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 714.f2, its twist by $17$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-17}) \) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$4$ | \(\Q(\sqrt{-2}, \sqrt{17})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{2}, \sqrt{17})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.5473632256.1 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.841100226985984.69 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.4.841100226985984.23 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.6327518887936.11 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/24\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | split | ord | nonsplit | ord | ord | add | ord | ord | ord | ss | ord | ord | ord | ss |
$\lambda$-invariant(s) | 7 | 2 | 1 | 1 | 1 | 1 | - | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | 2 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.