Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-45055808x+116390131764\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-45055808xz^2+116390131764z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-3649520475x+84859354617354\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(2932, 97470)$ | $1.0607644941206394888605462846$ | $\infty$ |
$(4015, 15162)$ | $1.0885837533423575922995116201$ | $\infty$ |
$(3882, 0)$ | $0$ | $2$ |
Integral points
\((-7670,\pm 103968)\), \((-1172,\pm 409374)\), \((2932,\pm 97470)\), \((3850,\pm 2592)\), \((3868,\pm 126)\), \( \left(3882, 0\right) \), \((4015,\pm 15162)\), \((4843,\pm 108624)\), \((5098,\pm 138624)\), \((11050,\pm 983808)\), \((15082,\pm 1693440)\), \((414763,\pm 267081624)\)
Invariants
Conductor: | $N$ | = | \( 121296 \) | = | $2^{4} \cdot 3 \cdot 7 \cdot 19^{2}$ |
|
Discriminant: | $\Delta$ | = | $56499227492228333568$ | = | $2^{16} \cdot 3^{9} \cdot 7^{2} \cdot 19^{7} $ |
|
j-invariant: | $j$ | = | \( \frac{52492168638015625}{293197968} \) | = | $2^{-4} \cdot 3^{-9} \cdot 5^{6} \cdot 7^{-2} \cdot 17^{3} \cdot 19^{-1} \cdot 881^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.9824140271950151994259778833$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.81704735705184966000423204590$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0361697824095453$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.508619542923853$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.0987264245448675814277694278$ |
|
Real period: | $\Omega$ | ≈ | $0.17624064679711647973980527513$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 288 $ = $ 2^{2}\cdot3^{2}\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $13.942098411470687395122862689 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 13.942098411 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.176241 \cdot 1.098726 \cdot 288}{2^2} \\ & \approx 13.942098411\end{aligned}$$
Modular invariants
Modular form 121296.2.a.cp
For more coefficients, see the Downloads section to the right.
Modular degree: | 9953280 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{8}^{*}$ | additive | -1 | 4 | 16 | 4 |
$3$ | $9$ | $I_{9}$ | split multiplicative | -1 | 1 | 9 | 9 |
$7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$19$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
$3$ | 3B | 9.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 4788 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 19 \), index $864$, genus $21$, and generators
$\left(\begin{array}{rr} 1 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 36 & 1 \end{array}\right),\left(\begin{array}{rr} 560 & 27 \\ 1905 & 298 \end{array}\right),\left(\begin{array}{rr} 2393 & 4752 \\ 0 & 4787 \end{array}\right),\left(\begin{array}{rr} 19 & 36 \\ 3240 & 1351 \end{array}\right),\left(\begin{array}{rr} 4753 & 36 \\ 4752 & 37 \end{array}\right),\left(\begin{array}{rr} 2767 & 36 \\ 242 & 259 \end{array}\right),\left(\begin{array}{rr} 3008 & 4779 \\ 2005 & 986 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 14 & 253 \end{array}\right)$.
The torsion field $K:=\Q(E[4788])$ is a degree-$107226685440$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/4788\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 1083 = 3 \cdot 19^{2} \) |
$3$ | split multiplicative | $4$ | \( 40432 = 2^{4} \cdot 7 \cdot 19^{2} \) |
$7$ | nonsplit multiplicative | $8$ | \( 17328 = 2^{4} \cdot 3 \cdot 19^{2} \) |
$19$ | additive | $200$ | \( 336 = 2^{4} \cdot 3 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 6, 9 and 18.
Its isogeny class 121296.cp
consists of 6 curves linked by isogenies of
degrees dividing 18.
Twists
The minimal quadratic twist of this elliptic curve is 798.d6, its twist by $76$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{57}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{19}) \) | \(\Z/6\Z\) | not in database |
$4$ | 4.4.44688.2 | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{3}, \sqrt{19})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.0.41092625887488.2 | \(\Z/6\Z\) | not in database |
$6$ | 6.6.380487276736.2 | \(\Z/18\Z\) | not in database |
$8$ | 8.0.26888414643216.11 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.8.6488309350656.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.8.720923261184.1 | \(\Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/18\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$12$ | 12.12.105537743895565558727184384.1 | \(\Z/2\Z \oplus \Z/18\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | split | ss | nonsplit | ord | ord | ss | add | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 3 | 2,2 | 2 | 2 | 2 | 2,2 | - | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
$\mu$-invariant(s) | - | 0 | 0,0 | 0 | 0 | 0 | 0,0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.