Properties

Label 121275dj
Number of curves $4$
Conductor $121275$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dj1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 121275dj have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 121275dj do not have complex multiplication.

Modular form 121275.2.a.dj

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} + 3 q^{8} - q^{11} - 6 q^{13} - q^{16} - 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 121275dj

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
121275.bb4 121275dj1 \([1, -1, 1, -404480, 133336522]\) \(-5461074081/2562175\) \(-3433559548018359375\) \([2]\) \(2359296\) \(2.2627\) \(\Gamma_0(N)\)-optimal
121275.bb3 121275dj2 \([1, -1, 1, -7074605, 7243689772]\) \(29220958012401/3705625\) \(4965891908291015625\) \([2, 2]\) \(4718592\) \(2.6093\)  
121275.bb2 121275dj3 \([1, -1, 1, -7680980, 5929068772]\) \(37397086385121/10316796875\) \(13825494517401123046875\) \([2]\) \(9437184\) \(2.9559\)  
121275.bb1 121275dj4 \([1, -1, 1, -113190230, 463540877272]\) \(119678115308998401/1925\) \(2579684108203125\) \([2]\) \(9437184\) \(2.9559\)