Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-x^2+38358x+10962391\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-x^2z+38358xz^2+10962391z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+613725x+702206750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(11315/4, 1195297/8)$ | $7.0887038278708418407251161962$ | $\infty$ |
| $(-166, 83)$ | $0$ | $2$ |
Integral points
\( \left(-166, 83\right) \)
Invariants
| Conductor: | $N$ | = | \( 121275 \) | = | $3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 11$ |
|
| Discriminant: | $\Delta$ | = | $-55617989372859375$ | = | $-1 \cdot 3^{6} \cdot 5^{6} \cdot 7^{9} \cdot 11^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{4657463}{41503} \) | = | $7^{-3} \cdot 11^{-2} \cdot 167^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.8943870236066404059086811353$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.43259315147212127964199752150$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.8926246805538307$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.9249597247226737$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $7.0887038278708418407251161962$ |
|
| Real period: | $\Omega$ | ≈ | $0.25877111338329575157279524978$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot2\cdot2\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $7.3374071279302728990084479168 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.337407128 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.258771 \cdot 7.088704 \cdot 16}{2^2} \\ & \approx 7.337407128\end{aligned}$$
Modular invariants
Modular form 121275.2.a.ew
For more coefficients, see the Downloads section to the right.
| Modular degree: | 884736 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $5$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $7$ | $2$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
| $11$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 308 = 2^{2} \cdot 7 \cdot 11 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 90 & 1 \\ 263 & 0 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 81 & 232 \\ 76 & 231 \end{array}\right),\left(\begin{array}{rr} 57 & 4 \\ 114 & 9 \end{array}\right),\left(\begin{array}{rr} 305 & 4 \\ 304 & 5 \end{array}\right)$.
The torsion field $K:=\Q(E[308])$ is a degree-$212889600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/308\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 11025 = 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
| $3$ | additive | $6$ | \( 13475 = 5^{2} \cdot 7^{2} \cdot 11 \) |
| $5$ | additive | $14$ | \( 4851 = 3^{2} \cdot 7^{2} \cdot 11 \) |
| $7$ | additive | $32$ | \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \) |
| $11$ | nonsplit multiplicative | $12$ | \( 11025 = 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 121275dg
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 77c1, its twist by $105$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-7}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.2.3049200.2 | \(\Z/4\Z\) | not in database |
| $8$ | 8.0.455583411360000.220 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.11530778490000.11 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ord | add | add | add | nonsplit | ord | ord | ss | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 7 | - | - | - | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0 | - | - | - | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.