Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2-7074605x+7243689772\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z-7074605xz^2+7243689772z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-113193675x+463482951750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(1054, 30410)$ | $1.4724508996115093655123144919$ | $\infty$ |
| $(-3071, 1535)$ | $0$ | $2$ |
| $(1549, -775)$ | $0$ | $2$ |
Integral points
\( \left(-3071, 1535\right) \), \( \left(1054, 30410\right) \), \( \left(1054, -31465\right) \), \( \left(1304, 14660\right) \), \( \left(1304, -15965\right) \), \( \left(1549, -775\right) \), \( \left(1553, -29\right) \), \( \left(1553, -1525\right) \), \( \left(1780, 16088\right) \), \( \left(1780, -17869\right) \), \( \left(2074, 37550\right) \), \( \left(2074, -39625\right) \)
Invariants
| Conductor: | $N$ | = | \( 121275 \) | = | $3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 11$ |
|
| Discriminant: | $\Delta$ | = | $4965891908291015625$ | = | $3^{6} \cdot 5^{10} \cdot 7^{8} \cdot 11^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{29220958012401}{3705625} \) | = | $3^{3} \cdot 5^{-4} \cdot 7^{-2} \cdot 11^{-2} \cdot 10267^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.6093152305466809477848727719$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.28233505546791926223419411510$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0266230298355044$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.034221411322318$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.4724508996115093655123144919$ |
|
| Real period: | $\Omega$ | ≈ | $0.23397004788237525897651994495$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 2^{2}\cdot2^{2}\cdot2^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $2.7560752598924109749181739867 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.756075260 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.233970 \cdot 1.472451 \cdot 128}{4^2} \\ & \approx 2.756075260\end{aligned}$$
Modular invariants
Modular form 121275.2.a.bb
For more coefficients, see the Downloads section to the right.
| Modular degree: | 4718592 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $5$ | $4$ | $I_{4}^{*}$ | additive | 1 | 2 | 10 | 4 |
| $7$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
| $11$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 2.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 4620 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3079 & 0 \\ 0 & 4619 \end{array}\right),\left(\begin{array}{rr} 1081 & 2160 \\ 4320 & 3091 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 923 & 0 \\ 0 & 4619 \end{array}\right),\left(\begin{array}{rr} 4617 & 4 \\ 4616 & 5 \end{array}\right),\left(\begin{array}{rr} 2521 & 2160 \\ 3810 & 4321 \end{array}\right),\left(\begin{array}{rr} 3869 & 1230 \\ 90 & 3389 \end{array}\right)$.
The torsion field $K:=\Q(E[4620])$ is a degree-$1226244096000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/4620\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 11025 = 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
| $3$ | additive | $6$ | \( 13475 = 5^{2} \cdot 7^{2} \cdot 11 \) |
| $5$ | additive | $18$ | \( 4851 = 3^{2} \cdot 7^{2} \cdot 11 \) |
| $7$ | additive | $32$ | \( 2475 = 3^{2} \cdot 5^{2} \cdot 11 \) |
| $11$ | nonsplit multiplicative | $12$ | \( 11025 = 3^{2} \cdot 5^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 121275.bb
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 385.b3, its twist by $105$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $4$ | \(\Q(\sqrt{-15}, \sqrt{77})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-7}, \sqrt{15})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{11}, \sqrt{105})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ord | add | add | add | nonsplit | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 7 | - | - | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0 | - | - | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.