Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-608x+5806\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-608xz^2+5806z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-787347x+273258414\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{3}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(25, 67)$ | $0.68409079431762998434094253968$ | $\infty$ |
$(10, 22)$ | $0$ | $3$ |
Integral points
\( \left(-23, 99\right) \), \( \left(-23, -77\right) \), \( \left(10, 22\right) \), \( \left(10, -33\right) \), \( \left(25, 67\right) \), \( \left(25, -93\right) \), \( \left(76, 594\right) \), \( \left(76, -671\right) \)
Invariants
Conductor: | $N$ | = | \( 1210 \) | = | $2 \cdot 5 \cdot 11^{2}$ |
|
Discriminant: | $\Delta$ | = | $-468512000$ | = | $-1 \cdot 2^{8} \cdot 5^{3} \cdot 11^{4} $ |
|
j-invariant: | $j$ | = | \( -\frac{1693700041}{32000} \) | = | $-1 \cdot 2^{-8} \cdot 5^{-3} \cdot 11^{2} \cdot 241^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.45837949287187432463713483455$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.34091893139424919005017969144$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9706848607140809$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.349430127752986$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.68409079431762998434094253968$ |
|
Real period: | $\Omega$ | ≈ | $1.6649220275509405198732425880$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 18 $ = $ 2\cdot3\cdot3 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $3$ |
|
Special value: | $ L'(E,1)$ | ≈ | $2.2779156646084838664535096846 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.277915665 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.664922 \cdot 0.684091 \cdot 18}{3^2} \\ & \approx 2.277915665\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 576 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{8}$ | nonsplit multiplicative | 1 | 1 | 8 | 8 |
$5$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$11$ | $3$ | $IV$ | additive | -1 | 2 | 4 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B.1.1 | 3.8.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 60.16.0-60.a.1.8, level \( 60 = 2^{2} \cdot 3 \cdot 5 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 37 & 6 \\ 51 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 6 & 1 \\ 25 & 51 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 31 & 6 \\ 33 & 19 \end{array}\right),\left(\begin{array}{rr} 55 & 6 \\ 54 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[60])$ is a degree-$138240$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/60\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 605 = 5 \cdot 11^{2} \) |
$3$ | good | $2$ | \( 242 = 2 \cdot 11^{2} \) |
$5$ | split multiplicative | $6$ | \( 242 = 2 \cdot 11^{2} \) |
$11$ | additive | $52$ | \( 10 = 2 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 1210.f
consists of 2 curves linked by isogenies of
degree 3.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{3}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.2420.1 | \(\Z/6\Z\) | not in database |
$6$ | 6.0.117128000.2 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.0.6324912.1 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$9$ | 9.3.11958036750000.1 | \(\Z/9\Z\) | not in database |
$12$ | deg 12 | \(\Z/12\Z\) | not in database |
$18$ | 18.0.1012100067147766874112000000.1 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | ord | split | ord | add | ord | ss | ord | ss | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 1 | 5 | 2 | 1 | - | 1 | 1,1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | - | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.