Properties

Label 12090.o
Number of curves $4$
Conductor $12090$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 12090.o have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(13\)\(1 - T\)
\(31\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 12090.o do not have complex multiplication.

Modular form 12090.2.a.o

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + 2 q^{7} - q^{8} + q^{9} + q^{10} - 6 q^{11} + q^{12} + q^{13} - 2 q^{14} - q^{15} + q^{16} - 6 q^{17} - q^{18} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 12090.o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
12090.o1 12090p4 \([1, 0, 1, -365539, -83911138]\) \(5401609226997647595049/86393158323264000\) \(86393158323264000\) \([2]\) \(228096\) \(2.0498\)  
12090.o2 12090p3 \([1, 0, 1, -45539, 1720862]\) \(10443846301537515049/4758933504000000\) \(4758933504000000\) \([2]\) \(114048\) \(1.7032\)  
12090.o3 12090p2 \([1, 0, 1, -38524, 2852786]\) \(6322686217296773689/135260510172840\) \(135260510172840\) \([6]\) \(76032\) \(1.5005\)  
12090.o4 12090p1 \([1, 0, 1, -38324, 2884466]\) \(6224721371657832889/2942222400\) \(2942222400\) \([6]\) \(38016\) \(1.1539\) \(\Gamma_0(N)\)-optimal