Properties

Label 12054ba
Number of curves $4$
Conductor $12054$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ba1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 12054ba have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(41\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 - 5 T + 23 T^{2}\) 1.23.af
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 12054ba do not have complex multiplication.

Modular form 12054.2.a.ba

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} + 2 q^{5} - q^{6} + q^{8} + q^{9} + 2 q^{10} - 4 q^{11} - q^{12} - 2 q^{13} - 2 q^{15} + q^{16} - 2 q^{17} + q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 12054ba

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
12054.bd3 12054ba1 \([1, 1, 1, -442, -3529]\) \(81182737/5904\) \(694599696\) \([2]\) \(6912\) \(0.44295\) \(\Gamma_0(N)\)-optimal
12054.bd2 12054ba2 \([1, 1, 1, -1422, 16071]\) \(2703045457/544644\) \(64076821956\) \([2, 2]\) \(13824\) \(0.78952\)  
12054.bd1 12054ba3 \([1, 1, 1, -21512, 1205399]\) \(9357915116017/538002\) \(63295397298\) \([2]\) \(27648\) \(1.1361\)  
12054.bd4 12054ba4 \([1, 1, 1, 2988, 100743]\) \(25076571983/50863698\) \(-5984063206002\) \([2]\) \(27648\) \(1.1361\)