# Properties

 Label 120.b1 Conductor $120$ Discriminant $153600$ j-invariant $$\frac{1770025017602}{75}$$ CM no Rank $0$ Torsion structure $$\Z/{2}\Z$$

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Simplified equation

 $$y^2=x^3+x^2-3200x-70752$$ y^2=x^3+x^2-3200x-70752 (homogenize, simplify) $$y^2z=x^3+x^2z-3200xz^2-70752z^3$$ y^2z=x^3+x^2z-3200xz^2-70752z^3 (dehomogenize, simplify) $$y^2=x^3-259227x-50800554$$ y^2=x^3-259227x-50800554 (homogenize, minimize)

sage: E = EllipticCurve([0, 1, 0, -3200, -70752])

gp: E = ellinit([0, 1, 0, -3200, -70752])

magma: E := EllipticCurve([0, 1, 0, -3200, -70752]);

sage: E.short_weierstrass_model()

magma: WeierstrassModel(E);

## Mordell-Weil group structure

$$\Z/{2}\Z$$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-33, 0\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-33, 0\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$120$$ = $2^{3} \cdot 3 \cdot 5$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $153600$ = $2^{11} \cdot 3 \cdot 5^{2}$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{1770025017602}{75}$$ = $2 \cdot 3^{-1} \cdot 5^{-2} \cdot 9601^{3}$ Endomorphism ring: $\Z$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $0.47999886506991459138871606774\dots$ Stable Faltings height: $-0.15538605044336860891041337693\dots$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $0$ sage: E.regulator()  magma: Regulator(E); Regulator: $1$ sage: E.period_lattice().omega()  gp: if(E.disc>0,2,1)*E.omega[1]  magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E); Real period: $0.63474713898166649492320321353\dots$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $2$  = $1\cdot1\cdot2$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $2$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $4$ = $2^2$ (exact) sage: r = E.rank(); sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()  gp: ar = ellanalyticrank(E); gp: ar[2]/factorial(ar[1])  magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12); Special value: $L(E,1)$ ≈ $1.2694942779633329898464064271$

## Modular invariants

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + q^{3} + q^{5} + q^{9} - 4 q^{11} + 6 q^{13} + q^{15} - 6 q^{17} - 4 q^{19} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 64 $\Gamma_0(N)$-optimal: no Manin constant: 1

## Local data

This elliptic curve is not semistable. There are 3 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($N$) ord($\Delta$) ord$(j)_{-}$
$2$ $1$ $II^{*}$ Additive -1 3 11 0
$3$ $1$ $I_{1}$ Split multiplicative -1 1 1 1
$5$ $2$ $I_{2}$ Split multiplicative -1 1 2 2

## Galois representations

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 16.48.0.45
sage: gens = [[5, 4, 236, 237], [46, 185, 165, 106], [61, 16, 128, 165], [225, 16, 224, 17], [1, 0, 16, 1], [15, 2, 142, 227], [196, 181, 39, 130], [1, 16, 0, 1], [88, 1, 239, 10]]

sage: GL(2,Integers(240)).subgroup(gens)

magma: Gens := [[5, 4, 236, 237], [46, 185, 165, 106], [61, 16, 128, 165], [225, 16, 224, 17], [1, 0, 16, 1], [15, 2, 142, 227], [196, 181, 39, 130], [1, 16, 0, 1], [88, 1, 239, 10]];

magma: sub<GL(2,Integers(240))|Gens>;

The image of the adelic Galois representation has level $240$, index $192$, genus $1$, and generators

$\left(\begin{array}{rr} 5 & 4 \\ 236 & 237 \end{array}\right),\left(\begin{array}{rr} 46 & 185 \\ 165 & 106 \end{array}\right),\left(\begin{array}{rr} 61 & 16 \\ 128 & 165 \end{array}\right),\left(\begin{array}{rr} 225 & 16 \\ 224 & 17 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 142 & 227 \end{array}\right),\left(\begin{array}{rr} 196 & 181 \\ 39 & 130 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 88 & 1 \\ 239 & 10 \end{array}\right)$

## $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $p$-adic regulators are identically $1$ since the rank is $0$.

## Iwasawa invariants

$p$ Reduction type $\lambda$-invariant(s) 2 3 5 add split split - 3 1 - 0 0

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2, 4 and 8.
Its isogeny class 120.b consists of 6 curves linked by isogenies of degrees dividing 8.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $2$ $$\Q(\sqrt{6})$$ $$\Z/2\Z \oplus \Z/2\Z$$ 2.2.24.1-600.1-p7 $2$ $$\Q(\sqrt{-6})$$ $$\Z/4\Z$$ Not in database $2$ $$\Q(\sqrt{-1})$$ $$\Z/4\Z$$ 2.0.4.1-1800.2-b6 $4$ 4.2.1382400.1 $$\Z/2\Z \oplus \Z/4\Z$$ Not in database $4$ $$\Q(i, \sqrt{6})$$ $$\Z/2\Z \oplus \Z/4\Z$$ Not in database $4$ 4.0.55296.1 $$\Z/8\Z$$ Not in database $4$ $$\Q(i, \sqrt{5})$$ $$\Z/8\Z$$ Not in database $4$ $$\Q(i, \sqrt{30})$$ $$\Z/8\Z$$ Not in database $8$ 8.0.7644119040000.32 $$\Z/4\Z \oplus \Z/4\Z$$ Not in database $8$ 8.0.3317760000.9 $$\Z/2\Z \oplus \Z/8\Z$$ Not in database $8$ 8.0.12230590464.5 $$\Z/2\Z \oplus \Z/8\Z$$ Not in database $8$ 8.0.36864000000.5 $$\Z/16\Z$$ Not in database $8$ 8.2.113374080000.2 $$\Z/6\Z$$ Not in database $16$ deg 16 $$\Z/2\Z \oplus \Z/8\Z$$ Not in database $16$ deg 16 $$\Z/4\Z \oplus \Z/8\Z$$ Not in database $16$ deg 16 $$\Z/16\Z$$ Not in database $16$ deg 16 $$\Z/2\Z \oplus \Z/16\Z$$ Not in database $16$ deg 16 $$\Z/2\Z \oplus \Z/16\Z$$ Not in database $16$ deg 16 $$\Z/2\Z \oplus \Z/6\Z$$ Not in database $16$ deg 16 $$\Z/12\Z$$ Not in database $16$ deg 16 $$\Z/12\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.