Properties

Label 119952.dy
Number of curves $1$
Conductor $119952$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dy1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 119952.dy1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 119952.dy do not have complex multiplication.

Modular form 119952.2.a.dy

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} - 3 q^{11} - 2 q^{13} + q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 119952.dy

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
119952.dy1 119952dx1 \([0, 0, 0, 634893, 857574578]\) \(3947714094191/46599266304\) \(-334086337292755009536\) \([]\) \(3234816\) \(2.6191\) \(\Gamma_0(N)\)-optimal