Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-2064613971x+414744081367826\)
|
(homogenize, simplify) |
\(y^2z=x^3-2064613971xz^2+414744081367826z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-2064613971x+414744081367826\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-37226874476302/451095121, 46037695309370319170/9580809274919)$ | $28.395492164815016436210556511$ | $\infty$ |
$(-83762, 0)$ | $0$ | $2$ |
Integral points
\( \left(-83762, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 119952 \) | = | $2^{4} \cdot 3^{2} \cdot 7^{2} \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $-73746222127712565105575019184128$ | = | $-1 \cdot 2^{15} \cdot 3^{38} \cdot 7^{8} \cdot 17^{2} $ |
|
j-invariant: | $j$ | = | \( -\frac{2770540998624539614657}{209924951154647363208} \) | = | $-1 \cdot 2^{-3} \cdot 3^{-32} \cdot 7^{-2} \cdot 17^{-2} \cdot 383^{3} \cdot 36671^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $4.7945373687446745702023382328$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.5791289693230177625348071212$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0817271650752718$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.912489876043947$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $28.395492164815016436210556511$ |
|
Real period: | $\Omega$ | ≈ | $0.015999828129809967177941382487$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2^{2}\cdot2^{2}\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $7.2691679087744931314027336456 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.269167909 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.016000 \cdot 28.395492 \cdot 64}{2^2} \\ & \approx 7.269167909\end{aligned}$$
Modular invariants
Modular form 119952.2.a.bx
For more coefficients, see the Downloads section to the right.
Modular degree: | 283115520 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{7}^{*}$ | additive | -1 | 4 | 15 | 3 |
$3$ | $4$ | $I_{32}^{*}$ | additive | -1 | 2 | 38 | 32 |
$7$ | $2$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
$17$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 16.48.0.204 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 5712 = 2^{4} \cdot 3 \cdot 7 \cdot 17 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 4514 & 4011 \\ 567 & 398 \end{array}\right),\left(\begin{array}{rr} 2447 & 0 \\ 0 & 5711 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1903 & 0 \\ 0 & 5711 \end{array}\right),\left(\begin{array}{rr} 3949 & 4368 \\ 1680 & 5125 \end{array}\right),\left(\begin{array}{rr} 5697 & 16 \\ 5696 & 17 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 5614 & 5699 \end{array}\right),\left(\begin{array}{rr} 5524 & 1701 \\ 567 & 5314 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 5708 & 5709 \end{array}\right)$.
The torsion field $K:=\Q(E[5712])$ is a degree-$970293510144$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/5712\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 441 = 3^{2} \cdot 7^{2} \) |
$3$ | additive | $8$ | \( 13328 = 2^{4} \cdot 7^{2} \cdot 17 \) |
$7$ | additive | $32$ | \( 2448 = 2^{4} \cdot 3^{2} \cdot 17 \) |
$17$ | split multiplicative | $18$ | \( 7056 = 2^{4} \cdot 3^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 119952.bx
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 714.f3, its twist by $-84$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{21}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-42}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-2}, \sqrt{21})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{21}, \sqrt{34})\) | \(\Z/8\Z\) | not in database |
$4$ | \(\Q(\sqrt{-17}, \sqrt{21})\) | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.3262849744896.70 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.1064517474779136.3 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/16\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | ord | add | ord | ord | split | ord | ord | ord | ss | ord | ord | ord | ss |
$\lambda$-invariant(s) | - | - | 1 | - | 1 | 1 | 4 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | - | - | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.