Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2+xy=x^3+x^2-435175x-110676875\) | (homogenize, simplify) | 
| \(y^2z+xyz=x^3+x^2z-435175xz^2-110676875z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-563987475x-5155280471250\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(-1525/4, 1525/8)$ | $0$ | $2$ | 
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 119850 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 17 \cdot 47$ |  | 
| Discriminant: | $\Delta$ | = | $112659000000$ | = | $2^{6} \cdot 3 \cdot 5^{6} \cdot 17 \cdot 47^{2} $ |  | 
| j-invariant: | $j$ | = | \( \frac{583306826994199153}{7210176} \) | = | $2^{-6} \cdot 3^{-1} \cdot 17^{-1} \cdot 47^{-2} \cdot 593^{3} \cdot 1409^{3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.6829756822570471314005203516$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.87825672603999694410014068499$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $0.9610661971900024$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.3239382132628625$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 0$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |  | 
| Real period: | $\Omega$ | ≈ | $0.18588033245321107250951592980$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot1\cdot2^{2}\cdot1\cdot2 $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |  | 
| Special value: | $ L(E,1)$ | ≈ | $0.74352132981284429003806371921 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |  | 
BSD formula
$$\begin{aligned} 0.743521330 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.185880 \cdot 1.000000 \cdot 16}{2^2} \\ & \approx 0.743521330\end{aligned}$$
Modular invariants
Modular form 119850.2.a.j
For more coefficients, see the Downloads section to the right.
| Modular degree: | 786432 |  | 
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{6}$ | nonsplit multiplicative | 1 | 1 | 6 | 6 | 
| $3$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 | 
| $5$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 | 
| $17$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 | 
| $47$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 2.3.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 9588 = 2^{2} \cdot 3 \cdot 17 \cdot 47 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2449 & 4 \\ 4898 & 9 \end{array}\right),\left(\begin{array}{rr} 3950 & 1 \\ 2819 & 0 \end{array}\right),\left(\begin{array}{rr} 7192 & 2401 \\ 2397 & 7192 \end{array}\right),\left(\begin{array}{rr} 9585 & 4 \\ 9584 & 5 \end{array}\right),\left(\begin{array}{rr} 6394 & 1 \\ 6391 & 0 \end{array}\right)$.
The torsion field $K:=\Q(E[9588])$ is a degree-$143597663944704$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/9588\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 1275 = 3 \cdot 5^{2} \cdot 17 \) | 
| $3$ | nonsplit multiplicative | $4$ | \( 19975 = 5^{2} \cdot 17 \cdot 47 \) | 
| $5$ | additive | $14$ | \( 4794 = 2 \cdot 3 \cdot 17 \cdot 47 \) | 
| $17$ | nonsplit multiplicative | $18$ | \( 7050 = 2 \cdot 3 \cdot 5^{2} \cdot 47 \) | 
| $47$ | split multiplicative | $48$ | \( 2550 = 2 \cdot 3 \cdot 5^{2} \cdot 17 \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 119850c
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 4794h2, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{51}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $4$ | 4.0.11265900.3 | \(\Z/4\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 17 | 47 | 
|---|---|---|---|---|---|
| Reduction type | nonsplit | nonsplit | add | nonsplit | split | 
| $\lambda$-invariant(s) | 9 | 0 | - | 0 | 1 | 
| $\mu$-invariant(s) | 0 | 0 | - | 0 | 0 | 
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.
