Properties

Label 119130bo
Number of curves $4$
Conductor $119130$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bo1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 119130bo have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(11\)\(1 + T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 4 T + 29 T^{2}\) 1.29.ae
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 119130bo do not have complex multiplication.

Modular form 119130.2.a.bo

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} - q^{5} + q^{6} + q^{8} + q^{9} - q^{10} + q^{11} + q^{12} - 2 q^{13} - q^{15} + q^{16} - 2 q^{17} + q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 119130bo

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
119130.bm3 119130bo1 \([1, 0, 0, -503061, 137291985]\) \(299270638153369/1069200\) \(50301455965200\) \([2]\) \(967680\) \(1.8471\) \(\Gamma_0(N)\)-optimal
119130.bm2 119130bo2 \([1, 0, 0, -510281, 133146261]\) \(312341975961049/17862322500\) \(840348698718622500\) \([2, 2]\) \(1935360\) \(2.1936\)  
119130.bm4 119130bo3 \([1, 0, 0, 366949, 543514455]\) \(116149984977671/2779502343750\) \(-130764136503283593750\) \([2]\) \(3870720\) \(2.5402\)  
119130.bm1 119130bo4 \([1, 0, 0, -1503031, -542519389]\) \(7981893677157049/1917731420550\) \(90221364201156254550\) \([2]\) \(3870720\) \(2.5402\)