Properties

Label 119025.cb
Number of curves $2$
Conductor $119025$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 119025.cb have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 119025.cb do not have complex multiplication.

Modular form 119025.2.a.cb

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} - 2 q^{7} - 3 q^{8} + 4 q^{11} + 6 q^{13} - 2 q^{14} - q^{16} - 4 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 119025.cb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
119025.cb1 119025ba2 \([1, -1, 0, -1847367, -962774834]\) \(413493625/1587\) \(2676033200149171875\) \([2]\) \(2433024\) \(2.3944\)  
119025.cb2 119025ba1 \([1, -1, 0, -61992, -29023709]\) \(-15625/207\) \(-349047808715109375\) \([2]\) \(1216512\) \(2.0478\) \(\Gamma_0(N)\)-optimal