Properties

Label 11825.f
Number of curves $2$
Conductor $11825$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 11825.f have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(5\)\(1\)
\(11\)\(1 - T\)
\(43\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 + 7 T + 19 T^{2}\) 1.19.h
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 11825.f do not have complex multiplication.

Modular form 11825.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{4} - 2 q^{7} - 2 q^{9} + q^{11} + 2 q^{12} + q^{13} + 4 q^{16} - 3 q^{17} - 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 11825.f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
11825.f1 11825e2 \([0, -1, 1, -12033, -500157]\) \(12332795428864/109322125\) \(1708158203125\) \([]\) \(15552\) \(1.1705\)  
11825.f2 11825e1 \([0, -1, 1, -1033, 12718]\) \(7809531904/286165\) \(4471328125\) \([]\) \(5184\) \(0.62122\) \(\Gamma_0(N)\)-optimal