Show commands: SageMath
Rank
The elliptic curves in class 11760e have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 11760e do not have complex multiplication.Modular form 11760.2.a.e
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 2 & 2 \\ 4 & 2 & 4 & 1 & 8 & 8 \\ 8 & 4 & 2 & 8 & 1 & 4 \\ 8 & 4 & 2 & 8 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 11760e
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
11760.o4 | 11760e1 | \([0, -1, 0, -8591, 309366]\) | \(37256083456/525\) | \(988251600\) | \([2]\) | \(12288\) | \(0.86615\) | \(\Gamma_0(N)\)-optimal |
11760.o3 | 11760e2 | \([0, -1, 0, -8836, 291040]\) | \(2533446736/275625\) | \(8301313440000\) | \([2, 2]\) | \(24576\) | \(1.2127\) | |
11760.o2 | 11760e3 | \([0, -1, 0, -33336, -2021760]\) | \(34008619684/4862025\) | \(585740676326400\) | \([2, 2]\) | \(49152\) | \(1.5593\) | |
11760.o5 | 11760e4 | \([0, -1, 0, 11744, 1427056]\) | \(1486779836/8203125\) | \(-988251600000000\) | \([2]\) | \(49152\) | \(1.5593\) | |
11760.o1 | 11760e5 | \([0, -1, 0, -513536, -141471840]\) | \(62161150998242/1607445\) | \(387306079856640\) | \([2]\) | \(98304\) | \(1.9059\) | |
11760.o6 | 11760e6 | \([0, -1, 0, 54864, -10982880]\) | \(75798394558/259416045\) | \(-62505038393763840\) | \([2]\) | \(98304\) | \(1.9059\) |