Properties

Label 117600.hz
Number of curves $4$
Conductor $117600$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("hz1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 117600.hz have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 117600.hz do not have complex multiplication.

Modular form 117600.2.a.hz

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{9} + 4 q^{11} + 6 q^{13} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 117600.hz

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
117600.hz1 117600dd4 \([0, 1, 0, -1372408, -619289812]\) \(303735479048/105\) \(98825160000000\) \([2]\) \(1769472\) \(2.0413\)  
117600.hz2 117600dd3 \([0, 1, 0, -178033, 14372063]\) \(82881856/36015\) \(271176239040000000\) \([2]\) \(1769472\) \(2.0413\)  
117600.hz3 117600dd1 \([0, 1, 0, -86158, -9607312]\) \(601211584/11025\) \(1297080225000000\) \([2, 2]\) \(884736\) \(1.6947\) \(\Gamma_0(N)\)-optimal
117600.hz4 117600dd2 \([0, 1, 0, -408, -27786312]\) \(-8/354375\) \(-333534915000000000\) \([2]\) \(1769472\) \(2.0413\)