Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-1693456x-847656704\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-1693456xz^2-847656704z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-137169963x-618353247078\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(2498, 102486)$ | $7.3929520095534666291222985969$ | $\infty$ |
| $(-751, 0)$ | $0$ | $2$ |
Integral points
\( \left(-751, 0\right) \), \((2498,\pm 102486)\)
Invariants
| Conductor: | $N$ | = | \( 11760 \) | = | $2^{4} \cdot 3 \cdot 5 \cdot 7^{2}$ |
|
| Discriminant: | $\Delta$ | = | $195165573120$ | = | $2^{12} \cdot 3^{4} \cdot 5 \cdot 7^{6} $ |
|
| j-invariant: | $j$ | = | \( \frac{1114544804970241}{405} \) | = | $3^{-4} \cdot 5^{-1} \cdot 103681^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.9569718635647034839435441175$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.29086960847710152197363562432$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0735374703334082$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.829894613549096$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $7.3929520095534666291222985969$ |
|
| Real period: | $\Omega$ | ≈ | $0.13234454769759057422974421892$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2^{2}\cdot2\cdot1\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $3.9136675594173874036326074794 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.913667559 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.132345 \cdot 7.392952 \cdot 16}{2^2} \\ & \approx 3.913667559\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 98304 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{4}^{*}$ | additive | -1 | 4 | 12 | 0 |
| $3$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
| $5$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $7$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 16.48.0.121 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7 \), index $768$, genus $13$, and generators
$\left(\begin{array}{rr} 1889 & 448 \\ 1050 & 3359 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 32 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 32 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1439 & 0 \\ 0 & 3359 \end{array}\right),\left(\begin{array}{rr} 5 & 28 \\ 68 & 381 \end{array}\right),\left(\begin{array}{rr} 421 & 2912 \\ 1876 & 2913 \end{array}\right),\left(\begin{array}{rr} 1303 & 1946 \\ 1302 & 491 \end{array}\right),\left(\begin{array}{rr} 3329 & 32 \\ 3328 & 33 \end{array}\right),\left(\begin{array}{rr} 1072 & 2905 \\ 1463 & 3186 \end{array}\right),\left(\begin{array}{rr} 23 & 18 \\ 798 & 1355 \end{array}\right)$.
The torsion field $K:=\Q(E[3360])$ is a degree-$23781703680$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3360\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 245 = 5 \cdot 7^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 3920 = 2^{4} \cdot 5 \cdot 7^{2} \) |
| $5$ | nonsplit multiplicative | $6$ | \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \) |
| $7$ | additive | $26$ | \( 240 = 2^{4} \cdot 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4, 8 and 16.
Its isogeny class 11760.p
consists of 8 curves linked by isogenies of
degrees dividing 16.
Twists
The minimal quadratic twist of this elliptic curve is 15.a1, its twist by $28$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{5}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-35}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-7}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{5}, \sqrt{-7})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{2}, \sqrt{-7})\) | \(\Z/8\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-7}, \sqrt{10})\) | \(\Z/8\Z\) | not in database |
| $8$ | 8.4.153664000000.9 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.2458624000000.27 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.6146560000.2 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.12745506816000000.321 | \(\Z/16\Z\) | not in database |
| $8$ | 8.0.12745506816000000.280 | \(\Z/16\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | 16.0.162447943996702457856000000000000.29 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | nonsplit | nonsplit | add | ord | ord | ord | ord | ss | ord | ss | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 3 | 1 | - | 1 | 1 | 1 | 1 | 1,1 | 1 | 1,1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | 0 | 0 | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.