Properties

Label 1170.c
Number of curves $4$
Conductor $1170$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1170.c have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1 - T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1170.c do not have complex multiplication.

Modular form 1170.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + q^{5} - 4 q^{7} - q^{8} - q^{10} + q^{13} + 4 q^{14} + q^{16} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 1170.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1170.c1 1170b4 \([1, -1, 0, -4524, 71288]\) \(520300455507/193072360\) \(3800243261880\) \([2]\) \(3456\) \(1.1138\)  
1170.c2 1170b2 \([1, -1, 0, -3999, 98343]\) \(261984288445803/42250\) \(1140750\) \([6]\) \(1152\) \(0.56450\)  
1170.c3 1170b1 \([1, -1, 0, -249, 1593]\) \(-63378025803/812500\) \(-21937500\) \([6]\) \(576\) \(0.21793\) \(\Gamma_0(N)\)-optimal
1170.c4 1170b3 \([1, -1, 0, 876, 7568]\) \(3774555693/3515200\) \(-69189681600\) \([2]\) \(1728\) \(0.76723\)