Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2-4524x+71288\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z-4524xz^2+71288z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-72387x+4490046\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(59, 55)$ | $0.89454161782401513579054790802$ | $\infty$ |
$(67/4, -67/8)$ | $0$ | $2$ |
Integral points
\( \left(-71, 211\right) \), \( \left(-71, -140\right) \), \( \left(59, 55\right) \), \( \left(59, -114\right) \), \( \left(1073, 34531\right) \), \( \left(1073, -35604\right) \)
Invariants
Conductor: | $N$ | = | \( 1170 \) | = | $2 \cdot 3^{2} \cdot 5 \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $3800243261880$ | = | $2^{3} \cdot 3^{9} \cdot 5 \cdot 13^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{520300455507}{193072360} \) | = | $2^{-3} \cdot 3^{3} \cdot 5^{-1} \cdot 7^{3} \cdot 13^{-6} \cdot 383^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.1138074924108463402983806734$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.28984827590976407175194674571$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9830620236547647$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.2181798039682$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.89454161782401513579054790802$ |
|
Real period: | $\Omega$ | ≈ | $0.71814555761063833667704108427$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 12 $ = $ 1\cdot2\cdot1\cdot( 2 \cdot 3 ) $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $1.9272332668144496497955388989 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 1.927233267 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.718146 \cdot 0.894542 \cdot 12}{2^2} \\ & \approx 1.927233267\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 3456 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$3$ | $2$ | $III^{*}$ | additive | 1 | 2 | 9 | 0 |
$5$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$13$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
$3$ | 3B.1.2 | 3.8.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1560 = 2^{3} \cdot 3 \cdot 5 \cdot 13 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 10 & 3 \\ 1221 & 1552 \end{array}\right),\left(\begin{array}{rr} 1288 & 1549 \\ 555 & 32 \end{array}\right),\left(\begin{array}{rr} 10 & 3 \\ 753 & 1552 \end{array}\right),\left(\begin{array}{rr} 1081 & 12 \\ 246 & 73 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 1510 & 1551 \end{array}\right),\left(\begin{array}{rr} 1549 & 12 \\ 1548 & 13 \end{array}\right),\left(\begin{array}{rr} 66 & 337 \\ 845 & 1106 \end{array}\right)$.
The torsion field $K:=\Q(E[1560])$ is a degree-$9661317120$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1560\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 15 = 3 \cdot 5 \) |
$3$ | additive | $2$ | \( 5 \) |
$5$ | split multiplicative | $6$ | \( 234 = 2 \cdot 3^{2} \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 90 = 2 \cdot 3^{2} \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 1170.c
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{30}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-3}) \) | \(\Z/6\Z\) | not in database |
$3$ | 3.1.675.1 | \(\Z/6\Z\) | not in database |
$4$ | 4.0.730080.3 | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-3}, \sqrt{-10})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.0.1366875.1 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.2.3499200000.2 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$8$ | 8.0.852826890240000.136 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.533016806400.11 | \(\Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$18$ | 18.0.23024971783224538546798580011200000000.2 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | add | split | ord | ss | split | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 2 | - | 2 | 1 | 1,1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | - | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.