Properties

Label 116281.c
Number of curves $2$
Conductor $116281$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 116281.c have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(11\)\(1\)
\(31\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 116281.c do not have complex multiplication.

Modular form 116281.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - 2 q^{3} - q^{4} + q^{5} - 2 q^{6} - 2 q^{7} - 3 q^{8} + q^{9} + q^{10} + 2 q^{12} - q^{13} - 2 q^{14} - 2 q^{15} - q^{16} + 5 q^{17} + q^{18} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 11 \\ 11 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 116281.c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
116281.c1 116281b2 \([1, 0, 1, -3490853, -2510792715]\) \(-24729001\) \(-190244295942540961\) \([]\) \(2019600\) \(2.3980\)  
116281.c2 116281b1 \([1, 0, 1, -2423, 179199]\) \(-121\) \(-12993941393521\) \([]\) \(183600\) \(1.1990\) \(\Gamma_0(N)\)-optimal