Properties

Label 116160.jo
Number of curves $4$
Conductor $116160$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("jo1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 116160.jo have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 116160.jo do not have complex multiplication.

Modular form 116160.2.a.jo

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + 4 q^{7} + q^{9} + 6 q^{13} + q^{15} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 116160.jo

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
116160.jo1 116160et4 \([0, 1, 0, -240225, 25149375]\) \(26410345352/10546875\) \(612251481600000000\) \([2]\) \(1966080\) \(2.1112\)  
116160.jo2 116160et2 \([0, 1, 0, -109545, -13714857]\) \(20034997696/455625\) \(3306158000640000\) \([2, 2]\) \(983040\) \(1.7646\)  
116160.jo3 116160et1 \([0, 1, 0, -108940, -13876150]\) \(1261112198464/675\) \(76531435200\) \([2]\) \(491520\) \(1.4180\) \(\Gamma_0(N)\)-optimal
116160.jo4 116160et3 \([0, 1, 0, 11455, -42246657]\) \(2863288/13286025\) \(-771260538389299200\) \([2]\) \(1966080\) \(2.1112\)