Show commands: SageMath
Rank
The elliptic curves in class 116160.fx have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 116160.fx do not have complex multiplication.Modular form 116160.2.a.fx
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrr} 1 & 8 & 2 & 4 & 8 & 4 \\ 8 & 1 & 4 & 2 & 4 & 8 \\ 2 & 4 & 1 & 2 & 4 & 2 \\ 4 & 2 & 2 & 1 & 2 & 4 \\ 8 & 4 & 4 & 2 & 1 & 8 \\ 4 & 8 & 2 & 4 & 8 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 116160.fx
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
116160.fx1 | 116160hp6 | \([0, 1, 0, -30085601, -63524069985]\) | \(6484907238722641/283593750\) | \(131702096486400000000\) | \([2]\) | \(5898240\) | \(2.9388\) | |
116160.fx2 | 116160hp4 | \([0, 1, 0, -9099361, 10561771295]\) | \(179415687049201/1443420\) | \(670330146945761280\) | \([2]\) | \(2949120\) | \(2.5922\) | |
116160.fx3 | 116160hp3 | \([0, 1, 0, -1974881, -887763681]\) | \(1834216913521/329422500\) | \(152985155278602240000\) | \([2, 2]\) | \(2949120\) | \(2.5922\) | |
116160.fx4 | 116160hp2 | \([0, 1, 0, -580961, 157397535]\) | \(46694890801/3920400\) | \(1820649781827993600\) | \([2, 2]\) | \(1474560\) | \(2.2456\) | |
116160.fx5 | 116160hp1 | \([0, 1, 0, 38559, 11314719]\) | \(13651919/126720\) | \(-58849285877268480\) | \([2]\) | \(737280\) | \(1.8990\) | \(\Gamma_0(N)\)-optimal |
116160.fx6 | 116160hp5 | \([0, 1, 0, 3833119, -5119472481]\) | \(13411719834479/32153832150\) | \(-14932371056226769305600\) | \([2]\) | \(5898240\) | \(2.9388\) |