Properties

Label 11616.o
Number of curves $1$
Conductor $11616$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 11616.o1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 - 7 T + 29 T^{2}\) 1.29.ah
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 11616.o do not have complex multiplication.

Modular form 11616.2.a.o

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 3 q^{5} - 2 q^{7} + q^{9} + q^{13} - 3 q^{15} + q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 11616.o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
11616.o1 11616g1 \([0, -1, 0, 661951, -863028879]\) \(36534162368/387420489\) \(-340160604153908465664\) \([]\) \(380160\) \(2.6207\) \(\Gamma_0(N)\)-optimal