Properties

Label 116032e
Number of curves $1$
Conductor $116032$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 116032e1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1\)
\(37\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(13\) \( 1 + 3 T + 13 T^{2}\) 1.13.d
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 116032e do not have complex multiplication.

Modular form 116032.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{3} + 3 q^{5} + q^{9} - q^{11} + 3 q^{13} - 6 q^{15} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 116032e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
116032.m1 116032e1 \([0, 1, 0, -149, -1037]\) \(-65536/37\) \(-207929344\) \([]\) \(30720\) \(0.29922\) \(\Gamma_0(N)\)-optimal