Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-3817208x+3057112912\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-3817208xz^2+3057112912z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-309193875x+2227707731250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-4107/4, 614125/8)$ | $1.9028487473832701029467472326$ | $\infty$ |
$(-1558, 72250)$ | $2.0639620370021549918432628224$ | $\infty$ |
Integral points
\((-1558,\pm 72250)\), \((2658,\pm 108086)\), \((3693,\pm 198274)\), \((81266,\pm 23159882)\)
Invariants
Conductor: | $N$ | = | \( 115600 \) | = | $2^{4} \cdot 5^{2} \cdot 17^{2}$ |
|
Discriminant: | $\Delta$ | = | $-474351505988000000000$ | = | $-1 \cdot 2^{11} \cdot 5^{9} \cdot 17^{9} $ |
|
j-invariant: | $j$ | = | \( -\frac{63710026}{4913} \) | = | $-1 \cdot 2 \cdot 17^{-3} \cdot 317^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.7150776344849717956390380701$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.54399238738199472573542818342$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8749242142566698$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.906872556831423$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $3.2126077626272903293480531439$ |
|
Real period: | $\Omega$ | ≈ | $0.16301531520171989792812505555$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $8.3792682727068779295264934507 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 8.379268273 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.163015 \cdot 3.212608 \cdot 16}{1^2} \\ & \approx 8.379268273\end{aligned}$$
Modular invariants
Modular form 115600.2.a.v
For more coefficients, see the Downloads section to the right.
Modular degree: | 4976640 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{3}^{*}$ | additive | 1 | 4 | 11 | 0 |
$5$ | $2$ | $III^{*}$ | additive | -1 | 2 | 9 | 0 |
$17$ | $4$ | $I_{3}^{*}$ | additive | 1 | 2 | 9 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 680 = 2^{3} \cdot 5 \cdot 17 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 1 \\ 679 & 0 \end{array}\right),\left(\begin{array}{rr} 241 & 2 \\ 241 & 3 \end{array}\right),\left(\begin{array}{rr} 341 & 2 \\ 341 & 3 \end{array}\right),\left(\begin{array}{rr} 511 & 2 \\ 511 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 137 & 2 \\ 137 & 3 \end{array}\right),\left(\begin{array}{rr} 679 & 2 \\ 678 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[680])$ is a degree-$28877783040$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/680\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 1445 = 5 \cdot 17^{2} \) |
$5$ | additive | $14$ | \( 4624 = 2^{4} \cdot 17^{2} \) |
$17$ | additive | $162$ | \( 400 = 2^{4} \cdot 5^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 115600.v consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 3400.f1, its twist by $-340$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.680.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.314432000.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | deg 8 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ord | add | ord | ord | ord | add | ord | ord | ord | ord | ord | ord | ss | ord |
$\lambda$-invariant(s) | - | 2 | - | 2 | 4 | 2 | - | 2 | 2 | 2 | 2 | 2 | 2 | 2,2 | 2 |
$\mu$-invariant(s) | - | 0 | - | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.