Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
| \(y^2=x^3-769729395x-8219685891278\) | (homogenize, simplify) | 
| \(y^2z=x^3-769729395xz^2-8219685891278z^3\) | (dehomogenize, simplify) | 
| \(y^2=x^3-769729395x-8219685891278\) | (homogenize, minimize) | 
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order | 
|---|---|---|
| $(-16018, 0)$ | $0$ | $2$ | 
Integral points
      
    \( \left(-16018, 0\right) \)
    
    
    
        
    
    
        
    
      
Invariants
| Conductor: | $N$ | = | \( 115056 \) | = | $2^{4} \cdot 3^{2} \cdot 17 \cdot 47$ |  | 
| Discriminant: | $\Delta$ | = | $6610892935053312$ | = | $2^{14} \cdot 3^{7} \cdot 17^{4} \cdot 47^{2} $ |  | 
| j-invariant: | $j$ | = | \( \frac{16890809037822478057344625}{2213974668} \) | = | $2^{-2} \cdot 3^{-1} \cdot 5^{3} \cdot 17^{-4} \cdot 47^{-2} \cdot 157^{3} \cdot 461^{3} \cdot 709^{3}$ |  | 
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |  | ||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.3646246525544195059545100490$ |  | ||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.1221713276604193508396553091$ |  | ||
| $abc$ quality: | $Q$ | ≈ | $1.0212077352422504$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.264237556547191$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |  | 
| Mordell-Weil rank: | $r$ | = | $ 0$ |  | 
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |  | 
| Real period: | $\Omega$ | ≈ | $0.028662563947416320968950913354$ |  | 
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2^{2}\cdot2\cdot2 $ |  | 
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |  | 
| Special value: | $ L(E,1)$ | ≈ | $2.0637046042139751097644657615 $ |  | 
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $9$ = $3^2$ (exact) |  | 
BSD formula
$$\begin{aligned} 2.063704604 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{9 \cdot 0.028663 \cdot 1.000000 \cdot 32}{2^2} \\ & \approx 2.063704604\end{aligned}$$
Modular invariants
Modular form 115056.2.a.v
For more coefficients, see the Downloads section to the right.
| Modular degree: | 16318464 |  | 
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |  | 
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ | 
|---|---|---|---|---|---|---|---|
| $2$ | $2$ | $I_{6}^{*}$ | additive | -1 | 4 | 14 | 2 | 
| $3$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 | 
| $17$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 | 
| $47$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 | 
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image | 
|---|---|---|
| $2$ | 2B | 2.3.0.1 | 
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 564 = 2^{2} \cdot 3 \cdot 47 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 424 & 145 \\ 141 & 424 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 561 & 4 \\ 560 & 5 \end{array}\right),\left(\begin{array}{rr} 190 & 1 \\ 187 & 0 \end{array}\right),\left(\begin{array}{rr} 193 & 4 \\ 386 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[564])$ is a degree-$1833099264$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/564\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor | 
|---|---|---|---|
| $2$ | additive | $2$ | \( 9 = 3^{2} \) | 
| $3$ | additive | $8$ | \( 12784 = 2^{4} \cdot 17 \cdot 47 \) | 
| $17$ | nonsplit multiplicative | $18$ | \( 6768 = 2^{4} \cdot 3^{2} \cdot 47 \) | 
| $47$ | split multiplicative | $48$ | \( 2448 = 2^{4} \cdot 3^{2} \cdot 17 \) | 
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 115056.v
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 4794.d1, its twist by $12$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve | 
|---|---|---|---|
| $2$ | \(\Q(\sqrt{3}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database | 
| $4$ | 4.0.26508.1 | \(\Z/4\Z\) | not in database | 
| $8$ | 8.0.101185065216.3 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | 8.4.6596038656.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database | 
| $8$ | deg 8 | \(\Z/6\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/8\Z\) | not in database | 
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database | 
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 17 | 47 | 
|---|---|---|---|---|
| Reduction type | add | add | nonsplit | split | 
| $\lambda$-invariant(s) | - | - | 0 | 1 | 
| $\mu$-invariant(s) | - | - | 0 | 0 | 
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.
