Properties

Label 11466.q
Number of curves $3$
Conductor $11466$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("q1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 11466.q have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 11466.q do not have complex multiplication.

Modular form 11466.2.a.q

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{8} + 3 q^{11} - q^{13} + q^{16} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 11466.q

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
11466.q1 11466n3 \([1, -1, 0, -6907392, -6985732370]\) \(-424962187484640625/182\) \(-15609434022\) \([]\) \(155520\) \(2.2027\)  
11466.q2 11466n2 \([1, -1, 0, -85122, -9600116]\) \(-795309684625/6028568\) \(-517046892544728\) \([]\) \(51840\) \(1.6534\)  
11466.q3 11466n1 \([1, -1, 0, 3078, -70988]\) \(37595375/46592\) \(-3996015109632\) \([]\) \(17280\) \(1.1041\) \(\Gamma_0(N)\)-optimal