Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-6838896x+8062449172\)
|
(homogenize, simplify) |
\(y^2z=x^3-6838896xz^2+8062449172z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-6838896x+8062449172\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(239729429/3025, 3709786905783/166375)$ | $14.908058115990279971275270064$ | $\infty$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 114444 \) | = | $2^{2} \cdot 3^{2} \cdot 11 \cdot 17^{2}$ |
|
Discriminant: | $\Delta$ | = | $-7610384626768305955584$ | = | $-1 \cdot 2^{8} \cdot 3^{18} \cdot 11 \cdot 17^{8} $ |
|
j-invariant: | $j$ | = | \( -\frac{27172077568}{5845851} \) | = | $-1 \cdot 2^{16} \cdot 3^{-12} \cdot 11^{-1} \cdot 17 \cdot 29^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.9197714282922624975702466111$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.019558267547433392094779499752$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9854098358293056$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.077688859093488$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $14.908058115990279971275270064$ |
|
Real period: | $\Omega$ | ≈ | $0.12612308211330676474617021548$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 1\cdot2^{2}\cdot1\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $7.5210009516519657031634109866 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.521000952 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.126123 \cdot 14.908058 \cdot 4}{1^2} \\ & \approx 7.521000952\end{aligned}$$
Modular invariants
Modular form 114444.2.a.r
For more coefficients, see the Downloads section to the right.
Modular degree: | 8460288 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
$3$ | $4$ | $I_{12}^{*}$ | additive | -1 | 2 | 18 | 12 |
$11$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$17$ | $1$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B.1.2 | 3.8.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 66.16.0-66.a.1.1, level \( 66 = 2 \cdot 3 \cdot 11 \), index $16$, genus $0$, and generators
$\left(\begin{array}{rr} 61 & 6 \\ 60 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 6 & 1 \end{array}\right),\left(\begin{array}{rr} 4 & 3 \\ 9 & 7 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 63 & 64 \\ 56 & 59 \end{array}\right),\left(\begin{array}{rr} 54 & 5 \\ 11 & 21 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 13 & 6 \\ 39 & 19 \end{array}\right)$.
The torsion field $K:=\Q(E[66])$ is a degree-$237600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/66\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 28611 = 3^{2} \cdot 11 \cdot 17^{2} \) |
$3$ | additive | $2$ | \( 12716 = 2^{2} \cdot 11 \cdot 17^{2} \) |
$11$ | split multiplicative | $12$ | \( 10404 = 2^{2} \cdot 3^{2} \cdot 17^{2} \) |
$17$ | additive | $114$ | \( 396 = 2^{2} \cdot 3^{2} \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 114444u
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 38148f1, its twist by $-51$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-3}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.12716.2 | \(\Z/2\Z\) | not in database |
$3$ | 3.1.419628.2 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.1778663216.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.0.528262975152.1 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$6$ | 6.0.4365809712.9 | \(\Z/6\Z\) | not in database |
$9$ | 9.1.812804431035972672.4 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.2843740030857928944936480265473618725449728.2 | \(\Z/9\Z\) | not in database |
$18$ | 18.0.17837578164016203895646459022532128768.3 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.7267161474228823809337446268439015424.2 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | ord | ord | split | ord | add | ord | ord | ss | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | - | 1 | 3 | 2 | 1 | - | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | - | 0 | 0 | 0 | 0 | - | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.