Properties

Label 11440w
Number of curves $2$
Conductor $11440$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("w1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 11440w have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 - T\)
\(11\)\(1 + T\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 - 3 T + 3 T^{2}\) 1.3.ad
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 7 T + 29 T^{2}\) 1.29.ah
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 11440w do not have complex multiplication.

Modular form 11440.2.a.w

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{3} + q^{5} - 4 q^{7} + q^{9} + q^{11} + q^{13} - 2 q^{15} - 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 11440w

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
11440.g2 11440w1 \([0, 1, 0, 320, 2100]\) \(881974079/929500\) \(-3807232000\) \([2]\) \(6912\) \(0.52506\) \(\Gamma_0(N)\)-optimal
11440.g1 11440w2 \([0, 1, 0, -1760, 17908]\) \(147281603041/49156250\) \(201344000000\) \([2]\) \(13824\) \(0.87163\)