Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-126624x+15015960\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-126624xz^2+15015960z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-10256571x+10915865154\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(1229/4, 17927/8)$ | $5.9116392242265308575012780873$ | $\infty$ |
$(265, 0)$ | $0$ | $2$ |
Integral points
\( \left(265, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 11424 \) | = | $2^{5} \cdot 3 \cdot 7 \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $33076474706483712$ | = | $2^{9} \cdot 3^{3} \cdot 7^{3} \cdot 17^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{438536015880092936}{64602489661101} \) | = | $2^{3} \cdot 3^{-3} \cdot 7^{-3} \cdot 13^{3} \cdot 17^{-8} \cdot 29221^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.8945669173675572217252172319$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.3747065319475982396622931408$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9999948765811513$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.015324554362939$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.9116392242265308575012780873$ |
|
Real period: | $\Omega$ | ≈ | $0.35394255779620166227294024184$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 6 $ = $ 1\cdot1\cdot3\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $3.1385710616866374840457256546 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.138571062 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.353943 \cdot 5.911639 \cdot 6}{2^2} \\ & \approx 3.138571062\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 73728 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_0^{*}$ | additive | -1 | 5 | 9 | 0 |
$3$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
$7$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$17$ | $2$ | $I_{8}$ | nonsplit multiplicative | 1 | 1 | 8 | 8 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.6 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 168 = 2^{3} \cdot 3 \cdot 7 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 80 & 3 \\ 29 & 2 \end{array}\right),\left(\begin{array}{rr} 143 & 144 \\ 50 & 137 \end{array}\right),\left(\begin{array}{rr} 24 & 113 \\ 139 & 126 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 161 & 8 \\ 160 & 9 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 162 & 163 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 116 & 1 \\ 79 & 6 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[168])$ is a degree-$3096576$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/168\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 21 = 3 \cdot 7 \) |
$3$ | nonsplit multiplicative | $4$ | \( 544 = 2^{5} \cdot 17 \) |
$7$ | split multiplicative | $8$ | \( 1632 = 2^{5} \cdot 3 \cdot 17 \) |
$17$ | nonsplit multiplicative | $18$ | \( 672 = 2^{5} \cdot 3 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 11424n
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{42}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{7}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{6}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{6}, \sqrt{7})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | 4.4.526848.2 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.359729184374784.48 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.599298932736.6 | \(\Z/8\Z\) | not in database |
$8$ | 8.8.39969909374976.6 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.2.147788070912.1 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | nonsplit | ord | split | ord | ord | nonsplit | ord | ord | ord | ord | ord | ord | ord | ss |
$\lambda$-invariant(s) | - | 1 | 1 | 6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.