Learn more

Refine search


Results (41 matches)

  Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
11310.a1 11310.a \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\mathsf{trivial}$ $1.233682251$ $[1, 1, 0, -78, -468]$ \(y^2+xy=x^3+x^2-78x-468\)
11310.b1 11310.b \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $2$ $\Z/2\Z$ $0.912744658$ $[1, 1, 0, -498, 4068]$ \(y^2+xy=x^3+x^2-498x+4068\)
11310.b2 11310.b \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $2$ $\Z/2\Z$ $0.228186164$ $[1, 1, 0, -318, 7272]$ \(y^2+xy=x^3+x^2-318x+7272\)
11310.c1 11310.c \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $2$ $\Z/2\Z$ $0.988849977$ $[1, 1, 0, -8352, -272484]$ \(y^2+xy=x^3+x^2-8352x-272484\)
11310.c2 11310.c \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $0.988849977$ $[1, 1, 0, -1852, 25216]$ \(y^2+xy=x^3+x^2-1852x+25216\)
11310.c3 11310.c \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $2$ $\Z/2\Z$ $0.988849977$ $[1, 1, 0, -1772, 27984]$ \(y^2+xy=x^3+x^2-1772x+27984\)
11310.c4 11310.c \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $2$ $\Z/4\Z$ $0.988849977$ $[1, 1, 0, 3368, 147364]$ \(y^2+xy=x^3+x^2+3368x+147364\)
11310.d1 11310.d \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $9.917339935$ $[1, 0, 1, -4240444, 3163087226]$ \(y^2+xy+y=x^3-4240444x+3163087226\)
11310.d2 11310.d \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/6\Z$ $3.305779978$ $[1, 0, 1, -4170829, 3278200952]$ \(y^2+xy+y=x^3-4170829x+3278200952\)
11310.d3 11310.d \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/6\Z$ $1.652889989$ $[1, 0, 1, -4170249, 3279158416]$ \(y^2+xy+y=x^3-4170249x+3279158416\)
11310.d4 11310.d \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $4.958669967$ $[1, 0, 1, 3564036, 13489975162]$ \(y^2+xy+y=x^3+3564036x+13489975162\)
11310.e1 11310.e \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $2.343280735$ $[1, 0, 1, -326054, -71687698]$ \(y^2+xy+y=x^3-326054x-71687698\)
11310.e2 11310.e \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.171640367$ $[1, 0, 1, -20684, -1086154]$ \(y^2+xy+y=x^3-20684x-1086154\)
11310.e3 11310.e \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $0.585820183$ $[1, 0, 1, -3864, 71062]$ \(y^2+xy+y=x^3-3864x+71062\)
11310.e4 11310.e \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $2.343280735$ $[1, 0, 1, 15566, -4479154]$ \(y^2+xy+y=x^3+15566x-4479154\)
11310.f1 11310.f \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $0.555505122$ $[1, 0, 1, -833, 7796]$ \(y^2+xy+y=x^3-833x+7796\)
11310.f2 11310.f \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $0.277752561$ $[1, 0, 1, 1487, 43988]$ \(y^2+xy+y=x^3+1487x+43988\)
11310.g1 11310.g \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -49743, 4270306]$ \(y^2+xy+y=x^3-49743x+4270306\)
11310.h1 11310.h \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $0.587084598$ $[1, 1, 1, -9691, -123991]$ \(y^2+xy+y=x^3+x^2-9691x-123991\)
11310.h2 11310.h \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $0.293542299$ $[1, 1, 1, 36389, -916567]$ \(y^2+xy+y=x^3+x^2+36389x-916567\)
11310.i1 11310.i \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -4226735, 3342790415]$ \(y^2+xy+y=x^3+x^2-4226735x+3342790415\)
11310.i2 11310.i \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -1329235, -547792585]$ \(y^2+xy+y=x^3+x^2-1329235x-547792585\)
11310.i3 11310.i \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -277985, 46373915]$ \(y^2+xy+y=x^3+x^2-277985x+46373915\)
11310.i4 11310.i \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 1, 34515, 4248915]$ \(y^2+xy+y=x^3+x^2+34515x+4248915\)
11310.j1 11310.j \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $2.636485742$ $[1, 1, 1, -1253395, -540629155]$ \(y^2+xy+y=x^3+x^2-1253395x-540629155\)
11310.j2 11310.j \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.318242871$ $[1, 1, 1, -78895, -8345755]$ \(y^2+xy+y=x^3+x^2-78895x-8345755\)
11310.j3 11310.j \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z\oplus\Z/4\Z$ $2.636485742$ $[1, 1, 1, -11615, 292997]$ \(y^2+xy+y=x^3+x^2-11615x+292997\)
11310.j4 11310.j \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/4\Z$ $1.318242871$ $[1, 1, 1, -10335, 400005]$ \(y^2+xy+y=x^3+x^2-10335x+400005\)
11310.j5 11310.j \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $2.636485742$ $[1, 1, 1, 19125, -27596883]$ \(y^2+xy+y=x^3+x^2+19125x-27596883\)
11310.j6 11310.j \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/4\Z$ $5.272971485$ $[1, 1, 1, 35185, 2108837]$ \(y^2+xy+y=x^3+x^2+35185x+2108837\)
11310.k1 11310.k \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $0.853630883$ $[1, 0, 0, -64721, -6342135]$ \(y^2+xy=x^3-64721x-6342135\)
11310.k2 11310.k \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $0.853630883$ $[1, 0, 0, -26001, 1547721]$ \(y^2+xy=x^3-26001x+1547721\)
11310.k3 11310.k \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.426815441$ $[1, 0, 0, -4401, -80919]$ \(y^2+xy=x^3-4401x-80919\)
11310.k4 11310.k \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $0.853630883$ $[1, 0, 0, 719, -8215]$ \(y^2+xy=x^3+719x-8215\)
11310.l1 11310.l \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, 875, -15625]$ \(y^2+xy=x^3+875x-15625\)
11310.m1 11310.m \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $1.476104120$ $[1, 0, 0, -4176595, -3285697975]$ \(y^2+xy=x^3-4176595x-3285697975\)
11310.m2 11310.m \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.738052060$ $[1, 0, 0, -261595, -51124975]$ \(y^2+xy=x^3-261595x-51124975\)
11310.m3 11310.m \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/2\Z$ $0.369026030$ $[1, 0, 0, -79075, -121103143]$ \(y^2+xy=x^3-79075x-121103143\)
11310.m4 11310.m \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $1$ $\Z/4\Z$ $0.369026030$ $[1, 0, 0, -28315, 523217]$ \(y^2+xy=x^3-28315x+523217\)
11310.n1 11310.n \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -1905, -31383]$ \(y^2+xy=x^3-1905x-31383\)
11310.n2 11310.n \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 415, -102375]$ \(y^2+xy=x^3+415x-102375\)
  Download to