Show commands: SageMath
Rank
The elliptic curves in class 112710cj have rank \(0\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 112710cj do not have complex multiplication.Modular form 112710.2.a.cj
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 3 & 4 & 4 & 6 & 12 & 12 \\ 2 & 1 & 6 & 2 & 2 & 3 & 6 & 6 \\ 3 & 6 & 1 & 12 & 12 & 2 & 4 & 4 \\ 4 & 2 & 12 & 1 & 4 & 6 & 3 & 12 \\ 4 & 2 & 12 & 4 & 1 & 6 & 12 & 3 \\ 6 & 3 & 2 & 6 & 6 & 1 & 2 & 2 \\ 12 & 6 & 4 & 3 & 12 & 2 & 1 & 4 \\ 12 & 6 & 4 & 12 & 3 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 112710cj
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
112710.cj7 | 112710cj1 | \([1, 1, 1, -605786200, 5525820002585]\) | \(1018563973439611524445729/42904970360310988800\) | \(1035621682514961353618227200\) | \([4]\) | \(79626240\) | \(3.9483\) | \(\Gamma_0(N)\)-optimal |
112710.cj6 | 112710cj2 | \([1, 1, 1, -1606049880, -17425830293223]\) | \(18980483520595353274840609/5549773448629762560000\) | \(133958039550668849245616640000\) | \([2, 2]\) | \(159252480\) | \(4.2949\) | |
112710.cj5 | 112710cj3 | \([1, 1, 1, -7454115160, -246099036985063]\) | \(1897660325010178513043539489/14258428094958372000000\) | \(344163791973596256277668000000\) | \([4]\) | \(238878720\) | \(4.4977\) | |
112710.cj8 | 112710cj4 | \([1, 1, 1, 4300555240, -115815695740135]\) | \(364421318680576777174674911/450962301637624725000000\) | \(-10885133672176979795793525000000\) | \([2]\) | \(318504960\) | \(4.6415\) | |
112710.cj4 | 112710cj5 | \([1, 1, 1, -23516873880, -1387921578504423]\) | \(59589391972023341137821784609/8834417507562311995200\) | \(213241362163593327583667668800\) | \([2]\) | \(318504960\) | \(4.6415\) | |
112710.cj2 | 112710cj6 | \([1, 1, 1, -119049939240, -15810413259752295]\) | \(7730680381889320597382223137569/441370202660156250000\) | \(10653603721253505035156250000\) | \([2, 2]\) | \(477757440\) | \(4.8442\) | |
112710.cj3 | 112710cj7 | \([1, 1, 1, -118834062020, -15870608118373543]\) | \(-7688701694683937879808871873249/58423707246780395507812500\) | \(-1410206264904961824417114257812500\) | \([2]\) | \(955514880\) | \(5.1908\) | |
112710.cj1 | 112710cj8 | \([1, 1, 1, -1904799001740, -1011864096741752295]\) | \(31664865542564944883878115208137569/103216295812500\) | \(2491390462098629812500\) | \([2]\) | \(955514880\) | \(5.1908\) |