Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+x^2-345650x-74381083\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+x^2z-345650xz^2-74381083z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-447962427x-3463604363754\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-1101/4, 1097/8)$ | $0$ | $2$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 112710 \) | = | $2 \cdot 3 \cdot 5 \cdot 13 \cdot 17^{2}$ |
|
Discriminant: | $\Delta$ | = | $262141729396472250$ | = | $2 \cdot 3^{2} \cdot 5^{3} \cdot 13^{6} \cdot 17^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{189208196468929}{10860320250} \) | = | $2^{-1} \cdot 3^{-2} \cdot 5^{-3} \cdot 11^{3} \cdot 13^{-6} \cdot 17^{3} \cdot 307^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.0964298845100634339807221776$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.67982321248195539385595486866$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9869421687813174$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.287370242674875$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.19760303224612265510672457945$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 72 $ = $ 1\cdot2\cdot3\cdot( 2 \cdot 3 )\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $3.5568545804302077919210424301 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 3.556854580 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.197603 \cdot 1.000000 \cdot 72}{2^2} \\ & \approx 3.556854580\end{aligned}$$
Modular invariants
Modular form 112710.2.a.cb
For more coefficients, see the Downloads section to the right.
Modular degree: | 1492992 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$3$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$5$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$13$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
$17$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 26520 = 2^{3} \cdot 3 \cdot 5 \cdot 13 \cdot 17 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 15675 & 22168 \\ 1598 & 17477 \end{array}\right),\left(\begin{array}{rr} 14039 & 0 \\ 0 & 26519 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 24481 & 4692 \\ 3366 & 1633 \end{array}\right),\left(\begin{array}{rr} 26509 & 12 \\ 26508 & 13 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 23410 & 7803 \\ 19941 & 3112 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 26470 & 26511 \end{array}\right),\left(\begin{array}{rr} 23410 & 7803 \\ 22593 & 3112 \end{array}\right),\left(\begin{array}{rr} 17681 & 4692 \\ 20026 & 1633 \end{array}\right)$.
The torsion field $K:=\Q(E[26520])$ is a degree-$756828937912320$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/26520\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 1445 = 5 \cdot 17^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 578 = 2 \cdot 17^{2} \) |
$5$ | split multiplicative | $6$ | \( 22542 = 2 \cdot 3 \cdot 13 \cdot 17^{2} \) |
$13$ | split multiplicative | $14$ | \( 8670 = 2 \cdot 3 \cdot 5 \cdot 17^{2} \) |
$17$ | additive | $146$ | \( 390 = 2 \cdot 3 \cdot 5 \cdot 13 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 112710.cb
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 390.g1, its twist by $17$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{10}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-51}) \) | \(\Z/6\Z\) | not in database |
$4$ | 4.0.70331040.3 | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{10}, \sqrt{-51})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.2.4641723792.11 | \(\Z/6\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$18$ | 18.0.106659473053747712250295541449342127998687500000000.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 13 | 17 |
---|---|---|---|---|---|
Reduction type | split | nonsplit | split | split | add |
$\lambda$-invariant(s) | 9 | 6 | 1 | 1 | - |
$\mu$-invariant(s) | 0 | 1 | 0 | 0 | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.