Properties

Label 112710.bl
Number of curves $4$
Conductor $112710$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bl1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 112710.bl have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(13\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 112710.bl do not have complex multiplication.

Modular form 112710.2.a.bl

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - q^{8} + q^{9} - q^{10} + q^{12} - q^{13} + q^{15} + q^{16} - q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 112710.bl

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
112710.bl1 112710bi4 \([1, 0, 1, -139738, -20113702]\) \(12501706118329/2570490\) \(62045379738810\) \([2]\) \(589824\) \(1.6436\)  
112710.bl2 112710bi2 \([1, 0, 1, -9688, -242062]\) \(4165509529/1368900\) \(33041918204100\) \([2, 2]\) \(294912\) \(1.2971\)  
112710.bl3 112710bi1 \([1, 0, 1, -3908, 90866]\) \(273359449/9360\) \(225927645840\) \([2]\) \(147456\) \(0.95049\) \(\Gamma_0(N)\)-optimal
112710.bl4 112710bi3 \([1, 0, 1, 27882, -1654694]\) \(99317171591/106616250\) \(-2573457090896250\) \([2]\) \(589824\) \(1.6436\)