Properties

Label 112632s
Number of curves $2$
Conductor $112632$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("s1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 112632s have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(13\)\(1 + T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 112632s do not have complex multiplication.

Modular form 112632.2.a.s

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 4 q^{7} + q^{9} - 2 q^{11} + q^{13} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 112632s

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
112632.i2 112632s1 \([0, -1, 0, -564363, -163351524]\) \(-26409397504000/66072747\) \(-49735209483281712\) \([2]\) \(1520640\) \(2.0812\) \(\Gamma_0(N)\)-optimal
112632.i1 112632s2 \([0, -1, 0, -9035228, -10450369980]\) \(6772976019826000/42237\) \(508691680204032\) \([2]\) \(3041280\) \(2.4278\)