Properties

Label 112554e
Number of curves $1$
Conductor $112554$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 112554e1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(13\)\(1\)
\(37\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 112554e do not have complex multiplication.

Modular form 112554.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 4 q^{5} - 3 q^{7} - q^{8} + 4 q^{10} + 5 q^{11} + 3 q^{14} + q^{16} - 3 q^{17} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 112554e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
112554.a1 112554e1 \([1, -1, 0, -277304949, -1777342088651]\) \(-670206957616537490521/6109179936768\) \(-21496638787328774504448\) \([]\) \(44592768\) \(3.4498\) \(\Gamma_0(N)\)-optimal