Properties

Label 11200.be
Number of curves $3$
Conductor $11200$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("be1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 11200.be have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(7\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 11200.be do not have complex multiplication.

Modular form 11200.2.a.be

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{7} - 2 q^{9} - 3 q^{11} + 5 q^{13} - 3 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 9 & 3 \\ 9 & 1 & 3 \\ 3 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 11200.be

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
11200.be1 11200cn3 \([0, -1, 0, -13133, 610387]\) \(-250523582464/13671875\) \(-13671875000000\) \([]\) \(20736\) \(1.2788\)  
11200.be2 11200cn1 \([0, -1, 0, -133, -613]\) \(-262144/35\) \(-35000000\) \([]\) \(2304\) \(0.18014\) \(\Gamma_0(N)\)-optimal
11200.be3 11200cn2 \([0, -1, 0, 867, 1387]\) \(71991296/42875\) \(-42875000000\) \([]\) \(6912\) \(0.72945\)