Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-74475x+7796250\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-74475xz^2+7796250z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-74475x+7796250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(181, 496)$ | $1.2637828615774476383553215834$ | $\infty$ |
| $(175, 350)$ | $2.3234089351454183264336259186$ | $\infty$ |
| $(150, 0)$ | $0$ | $2$ |
| $(165, 0)$ | $0$ | $2$ |
Integral points
\( \left(-315, 0\right) \), \((-129,\pm 3906)\), \((-75,\pm 3600)\), \((69,\pm 1728)\), \((90,\pm 1350)\), \((135,\pm 450)\), \( \left(150, 0\right) \), \( \left(165, 0\right) \), \((175,\pm 350)\), \((181,\pm 496)\), \((214,\pm 1288)\), \((615,\pm 13950)\), \((885,\pm 25200)\), \((1375,\pm 50050)\), \((19525,\pm 2728000)\)
Invariants
| Conductor: | $N$ | = | \( 111600 \) | = | $2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 31$ |
|
| Discriminant: | $\Delta$ | = | $179345664000000$ | = | $2^{14} \cdot 3^{6} \cdot 5^{6} \cdot 31^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{979146657}{3844} \) | = | $2^{-2} \cdot 3^{3} \cdot 31^{-2} \cdot 331^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.5925210053120431606687988709$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.45465127579900718174643553563$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0250423431234554$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.8948223356090073$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.5564342772126457347951226745$ |
|
| Real period: | $\Omega$ | ≈ | $0.57255121504588087721202069338$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 2^{2}\cdot2^{2}\cdot2^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $11.709516412824308607959276265 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 11.709516413 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.572551 \cdot 2.556434 \cdot 128}{4^2} \\ & \approx 11.709516413\end{aligned}$$
Modular invariants
Modular form 111600.2.a.dy
For more coefficients, see the Downloads section to the right.
| Modular degree: | 393216 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{6}^{*}$ | additive | -1 | 4 | 14 | 2 |
| $3$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $5$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $31$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 8.12.0.3 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3720 = 2^{3} \cdot 3 \cdot 5 \cdot 31 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 1861 & 2730 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1801 & 1740 \\ 2610 & 3481 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 743 & 0 \\ 0 & 3719 \end{array}\right),\left(\begin{array}{rr} 3717 & 4 \\ 3716 & 5 \end{array}\right),\left(\begin{array}{rr} 2479 & 0 \\ 0 & 3719 \end{array}\right),\left(\begin{array}{rr} 929 & 1980 \\ 0 & 3719 \end{array}\right)$.
The torsion field $K:=\Q(E[3720])$ is a degree-$658243584000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3720\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 225 = 3^{2} \cdot 5^{2} \) |
| $3$ | additive | $6$ | \( 12400 = 2^{4} \cdot 5^{2} \cdot 31 \) |
| $5$ | additive | $14$ | \( 4464 = 2^{4} \cdot 3^{2} \cdot 31 \) |
| $31$ | split multiplicative | $32$ | \( 3600 = 2^{4} \cdot 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 111600.dy
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 62.a3, its twist by $60$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $4$ | \(\Q(\sqrt{-15}, \sqrt{-31})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{2}, \sqrt{15})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-30}, \sqrt{62})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | add | add | ss | ss | ord | ord | ord | ord | ord | split | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | - | - | 2,2 | 2,2 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 2 |
| $\mu$-invariant(s) | - | - | - | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.