Properties

Label 11154.u
Number of curves $4$
Conductor $11154$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("u1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 11154.u have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(11\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 11154.u do not have complex multiplication.

Modular form 11154.2.a.u

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} + 4 q^{5} - q^{6} + 2 q^{7} - q^{8} + q^{9} - 4 q^{10} - q^{11} + q^{12} - 2 q^{14} + 4 q^{15} + q^{16} - 2 q^{17} - q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 5 & 10 \\ 2 & 1 & 10 & 5 \\ 5 & 10 & 1 & 2 \\ 10 & 5 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 11154.u

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
11154.u1 11154q3 \([1, 0, 1, -1700989, -854028316]\) \(112763292123580561/1932612\) \(9328348995108\) \([2]\) \(216000\) \(2.0303\)  
11154.u2 11154q4 \([1, 0, 1, -1699299, -855809576]\) \(-112427521449300721/466873642818\) \(-2253509901016707762\) \([2]\) \(432000\) \(2.3769\)  
11154.u3 11154q1 \([1, 0, 1, -7609, 185564]\) \(10091699281/2737152\) \(13211709907968\) \([2]\) \(43200\) \(1.2256\) \(\Gamma_0(N)\)-optimal
11154.u4 11154q2 \([1, 0, 1, 19431, 1213084]\) \(168105213359/228637728\) \(-1103590643249952\) \([2]\) \(86400\) \(1.5722\)