Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-566041x-96180679\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-566041xz^2-96180679z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-733589163x-4485204991962\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-574, 6587)$ | $1.1629425489444883946193470866$ | $\infty$ |
$(-646, 323)$ | $0$ | $2$ |
$(826, -413)$ | $0$ | $2$ |
Integral points
\( \left(-646, 323\right) \), \( \left(-574, 6587\right) \), \( \left(-574, -6013\right) \), \( \left(-232, 4877\right) \), \( \left(-232, -4645\right) \), \( \left(826, -413\right) \), \( \left(1010, 18539\right) \), \( \left(1010, -19549\right) \), \( \left(2270, 100439\right) \), \( \left(2270, -102709\right) \), \( \left(8876, 828737\right) \), \( \left(8876, -837613\right) \)
Invariants
Conductor: | $N$ | = | \( 111090 \) | = | $2 \cdot 3 \cdot 5 \cdot 7 \cdot 23^{2}$ |
|
Discriminant: | $\Delta$ | = | $7614705586995360000$ | = | $2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 23^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{135487869158881}{51438240000} \) | = | $2^{-8} \cdot 3^{-8} \cdot 5^{-4} \cdot 7^{-2} \cdot 51361^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.3224557540202199282305664811$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.75470864605564508282719006520$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0190986885579905$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.420076119764435$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.1629425489444883946193470866$ |
|
Real period: | $\Omega$ | ≈ | $0.17969892072474172398236064063$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 1024 $ = $ 2^{3}\cdot2^{3}\cdot2\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $13.374689338253100305926388508 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 13.374689338 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.179699 \cdot 1.162943 \cdot 1024}{4^2} \\ & \approx 13.374689338\end{aligned}$$
Modular invariants
Modular form 111090.2.a.da
For more coefficients, see the Downloads section to the right.
Modular degree: | 2883584 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
$3$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
$5$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$7$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$23$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 8.48.0.98 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 38640 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 23 \), index $768$, genus $13$, and generators
$\left(\begin{array}{rr} 15135 & 11776 \\ 30314 & 18769 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 38625 & 16 \\ 38624 & 17 \end{array}\right),\left(\begin{array}{rr} 18493 & 25208 \\ 3680 & 9017 \end{array}\right),\left(\begin{array}{rr} 12881 & 25208 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 31919 & 0 \\ 0 & 38639 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 4 & 65 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 9753 & 11776 \\ 9476 & 30361 \end{array}\right),\left(\begin{array}{rr} 22081 & 11776 \\ 6486 & 32017 \end{array}\right)$.
The torsion field $K:=\Q(E[38640])$ is a degree-$397106888048640$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/38640\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 529 = 23^{2} \) |
$3$ | split multiplicative | $4$ | \( 37030 = 2 \cdot 5 \cdot 7 \cdot 23^{2} \) |
$5$ | nonsplit multiplicative | $6$ | \( 22218 = 2 \cdot 3 \cdot 7 \cdot 23^{2} \) |
$7$ | split multiplicative | $8$ | \( 15870 = 2 \cdot 3 \cdot 5 \cdot 23^{2} \) |
$23$ | additive | $266$ | \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 111090cx
consists of 8 curves linked by isogenies of
degrees dividing 16.
Twists
The minimal quadratic twist of this elliptic curve is 210e2, its twist by $-23$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-23}) \) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$4$ | \(\Q(\sqrt{-7}, \sqrt{23})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{7}, \sqrt{23})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.172005949696.1 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$8$ | 8.0.58027829760000.67 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/24\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | split | nonsplit | split | ord | ord | ord | ord | add | ord | ss | ord | ord | ord | ss |
$\lambda$-invariant(s) | 6 | 2 | 3 | 2 | 1 | 5 | 1 | 1 | - | 1 | 1,1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0,0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.