Learn more

Refine search


Results (1-50 of 180 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-mm images
110670.a1 110670.a 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 4.0844442634.084444263 [1,1,0,95973,11027187][1, 1, 0, -95973, -11027187] y2+xy=x3+x295973x11027187y^2+xy=x^3+x^2-95973x-11027187 2.3.0.a.1, 476.6.0.?, 1240.6.0.?, 147560.12.0.?
110670.a2 110670.a 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 2.0422221312.042222131 [1,1,0,3227,650867][1, 1, 0, 3227, -650867] y2+xy=x3+x2+3227x650867y^2+xy=x^3+x^2+3227x-650867 2.3.0.a.1, 238.6.0.?, 1240.6.0.?, 147560.12.0.?
110670.b1 110670.b 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 5.2868079165.286807916 [1,1,0,83188,9045008][1, 1, 0, -83188, -9045008] y2+xy=x3+x283188x9045008y^2+xy=x^3+x^2-83188x-9045008 2.3.0.a.1, 60.6.0.c.1, 4216.6.0.?, 63240.12.0.?
110670.b2 110670.b 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 2.6434039582.643403958 [1,1,0,1132,461232][1, 1, 0, 1132, -461232] y2+xy=x3+x2+1132x461232y^2+xy=x^3+x^2+1132x-461232 2.3.0.a.1, 30.6.0.a.1, 4216.6.0.?, 63240.12.0.?
110670.c1 110670.c 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 6.6476222296.647622229 [1,1,0,23283003,43250777397][1, 1, 0, -23283003, -43250777397] y2+xy=x3+x223283003x43250777397y^2+xy=x^3+x^2-23283003x-43250777397 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 280.24.0.?, 372.12.0.?, \ldots
110670.c2 110670.c 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 6.6476222296.647622229 [1,1,0,6468983,5717150247][1, 1, 0, -6468983, 5717150247] y2+xy=x3+x26468983x+5717150247y^2+xy=x^3+x^2-6468983x+5717150247 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 140.12.0.?, 280.24.0.?, \ldots
110670.c3 110670.c 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 3.3238111143.323811114 [1,1,0,1512633,620038863][1, 1, 0, -1512633, -620038863] y2+xy=x3+x21512633x620038863y^2+xy=x^3+x^2-1512633x-620038863 2.6.0.a.1, 8.12.0-2.a.1.1, 140.12.0.?, 280.24.0.?, 372.12.0.?, \ldots
110670.c4 110670.c 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 6.6476222296.647622229 [1,1,0,157787,52430147][1, 1, 0, 157787, -52430147] y2+xy=x3+x2+157787x52430147y^2+xy=x^3+x^2+157787x-52430147 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 140.12.0.?, 280.24.0.?, \ldots
110670.d1 110670.d 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 00 Z/2Z\Z/2\Z 11 [1,1,0,367399553,2710388330997][1, 1, 0, -367399553, 2710388330997] y2+xy=x3+x2367399553x+2710388330997y^2+xy=x^3+x^2-367399553x+2710388330997 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 24.24.0-24.bb.1.16, 140.12.0.?, \ldots
110670.d2 110670.d 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,1,0,22977153,42285767157][1, 1, 0, -22977153, 42285767157] y2+xy=x3+x222977153x+42285767157y^2+xy=x^3+x^2-22977153x+42285767157 2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0-2.a.1.1, 24.24.0-24.a.1.3, 140.12.0.?, \ldots
110670.d3 110670.d 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 00 Z/2Z\Z/2\Z 11 [1,1,0,14099073,75331756533][1, 1, 0, -14099073, 75331756533] y2+xy=x3+x214099073x+75331756533y^2+xy=x^3+x^2-14099073x+75331756533 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 12.12.0-4.c.1.1, 24.24.0-24.v.1.4, \ldots
110670.d4 110670.d 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 00 Z/2Z\Z/2\Z 11 [1,1,0,2005633,86874613][1, 1, 0, -2005633, 86874613] y2+xy=x3+x22005633x+86874613y^2+xy=x^3+x^2-2005633x+86874613 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 12.12.0-4.c.1.2, 24.24.0-24.bb.1.2, \ldots
110670.e1 110670.e 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 2.6462894582.646289458 [1,1,0,9599883258,362028067960212][1, 1, 0, -9599883258, 362028067960212] y2+xy=x3+x29599883258x+362028067960212y^2+xy=x^3+x^2-9599883258x+362028067960212 2.3.0.a.1, 8.6.0.b.1, 476.6.0.?, 952.12.0.?
110670.e2 110670.e 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 5.2925789165.292578916 [1,1,0,599883258,5658667960212][1, 1, 0, -599883258, 5658667960212] y2+xy=x3+x2599883258x+5658667960212y^2+xy=x^3+x^2-599883258x+5658667960212 2.3.0.a.1, 8.6.0.c.1, 238.6.0.?, 952.12.0.?
110670.f1 110670.f 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 3.1525119323.152511932 [1,1,0,245483,18510027][1, 1, 0, -245483, -18510027] y2+xy=x3+x2245483x18510027y^2+xy=x^3+x^2-245483x-18510027 2.3.0.a.1, 476.6.0.?, 744.6.0.?, 88536.12.0.?
110670.f2 110670.f 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 1.5762559661.576255966 [1,1,0,55837,2178483][1, 1, 0, 55837, -2178483] y2+xy=x3+x2+55837x2178483y^2+xy=x^3+x^2+55837x-2178483 2.3.0.a.1, 238.6.0.?, 744.6.0.?, 88536.12.0.?
110670.g1 110670.g 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 3.6545128663.654512866 [1,1,0,61428,5884368][1, 1, 0, -61428, -5884368] y2+xy=x3+x261428x5884368y^2+xy=x^3+x^2-61428x-5884368 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 1240.24.0.?, 1428.12.0.?, \ldots
110670.g2 110670.g 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 0.9136282160.913628216 [1,1,0,29108,1849968][1, 1, 0, -29108, 1849968] y2+xy=x3+x229108x+1849968y^2+xy=x^3+x^2-29108x+1849968 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 620.12.0.?, 1240.24.0.?, \ldots
110670.g3 110670.g 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 1.8272564331.827256433 [1,1,0,4308,69552][1, 1, 0, -4308, -69552] y2+xy=x3+x24308x69552y^2+xy=x^3+x^2-4308x-69552 2.6.0.a.1, 8.12.0-2.a.1.1, 620.12.0.?, 1240.24.0.?, 1428.12.0.?, \ldots
110670.g4 110670.g 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 3.6545128663.654512866 [1,1,0,812,7088][1, 1, 0, 812, -7088] y2+xy=x3+x2+812x7088y^2+xy=x^3+x^2+812x-7088 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 620.12.0.?, 1240.24.0.?, \ldots
110670.h1 110670.h 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 1.2566492331.256649233 [1,1,0,71493,7373547][1, 1, 0, -71493, -7373547] y2+xy=x3+x271493x7373547y^2+xy=x^3+x^2-71493x-7373547 2.3.0.a.1, 124.6.0.?, 280.6.0.?, 8680.12.0.?
110670.h2 110670.h 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 0.6283246160.628324616 [1,1,0,2893,197987][1, 1, 0, -2893, -197987] y2+xy=x3+x22893x197987y^2+xy=x^3+x^2-2893x-197987 2.3.0.a.1, 62.6.0.b.1, 280.6.0.?, 8680.12.0.?
110670.i1 110670.i 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 2.4123879822.412387982 [1,1,0,38019667,81933755981][1, 1, 0, -38019667, -81933755981] y2+xy=x3+x238019667x81933755981y^2+xy=x^3+x^2-38019667x-81933755981 2.3.0.a.1, 8.6.0.b.1, 476.6.0.?, 952.12.0.?
110670.i2 110670.i 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 4.8247759654.824775965 [1,1,0,2986583,6228017231][1, 1, 0, 2986583, -6228017231] y2+xy=x3+x2+2986583x6228017231y^2+xy=x^3+x^2+2986583x-6228017231 2.3.0.a.1, 8.6.0.c.1, 238.6.0.?, 952.12.0.?
110670.j1 110670.j 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 0.5454686180.545468618 [1,1,0,7217,37779][1, 1, 0, -7217, -37779] y2+xy=x3+x27217x37779y^2+xy=x^3+x^2-7217x-37779 2.3.0.a.1, 8.6.0.b.1, 476.6.0.?, 952.12.0.?
110670.j2 110670.j 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 1.0909372371.090937237 [1,1,0,1783,3579][1, 1, 0, 1783, -3579] y2+xy=x3+x2+1783x3579y^2+xy=x^3+x^2+1783x-3579 2.3.0.a.1, 8.6.0.c.1, 238.6.0.?, 952.12.0.?
110670.k1 110670.k 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 00 Z/2Z\Z/2\Z 11 [1,1,0,2784957,1637930301][1, 1, 0, -2784957, 1637930301] y2+xy=x3+x22784957x+1637930301y^2+xy=x^3+x^2-2784957x+1637930301 2.3.0.a.1, 204.6.0.?, 868.6.0.?, 44268.12.0.?
110670.k2 110670.k 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 00 Z/2Z\Z/2\Z 11 [1,1,0,2719677,1725183549][1, 1, 0, -2719677, 1725183549] y2+xy=x3+x22719677x+1725183549y^2+xy=x^3+x^2-2719677x+1725183549 2.3.0.a.1, 204.6.0.?, 434.6.0.?, 44268.12.0.?
110670.l1 110670.l 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 trivial\mathsf{trivial} 0.7039992590.703999259 [1,1,0,3307,71869][1, 1, 0, -3307, 71869] y2+xy=x3+x23307x+71869y^2+xy=x^3+x^2-3307x+71869 31620.2.0.?
110670.m1 110670.m 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 0.9993730360.999373036 [1,1,0,3982492,3059857556][1, 1, 0, -3982492, -3059857556] y2+xy=x3+x23982492x3059857556y^2+xy=x^3+x^2-3982492x-3059857556 2.3.0.a.1, 186.6.0.?, 476.6.0.?, 44268.12.0.?
110670.m2 110670.m 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 0.4996865180.499686518 [1,1,0,215992,60970256][1, 1, 0, -215992, -60970256] y2+xy=x3+x2215992x60970256y^2+xy=x^3+x^2-215992x-60970256 2.3.0.a.1, 238.6.0.?, 372.6.0.?, 44268.12.0.?
110670.n1 110670.n 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 18.7286194418.72861944 [1,1,0,3602217,2601781371][1, 1, 0, -3602217, -2601781371] y2+xy=x3+x23602217x2601781371y^2+xy=x^3+x^2-3602217x-2601781371 2.3.0.a.1, 476.6.0.?, 1240.6.0.?, 147560.12.0.?
110670.n2 110670.n 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 9.3643097229.364309722 [1,1,0,31017,108369531][1, 1, 0, -31017, -108369531] y2+xy=x3+x231017x108369531y^2+xy=x^3+x^2-31017x-108369531 2.3.0.a.1, 238.6.0.?, 1240.6.0.?, 147560.12.0.?
110670.o1 110670.o 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 3.0344385233.034438523 [1,1,0,1452,20286][1, 1, 0, -1452, -20286] y2+xy=x3+x21452x20286y^2+xy=x^3+x^2-1452x-20286 2.3.0.a.1, 476.6.0.?, 1240.6.0.?, 147560.12.0.?
110670.o2 110670.o 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 1.5172192611.517219261 [1,1,0,98,1376][1, 1, 0, 98, -1376] y2+xy=x3+x2+98x1376y^2+xy=x^3+x^2+98x-1376 2.3.0.a.1, 238.6.0.?, 1240.6.0.?, 147560.12.0.?
110670.p1 110670.p 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 00 Z/2Z\Z/2\Z 11 [1,0,1,393494,95039548][1, 0, 1, -393494, -95039548] y2+xy+y=x3393494x95039548y^2+xy+y=x^3-393494x-95039548 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 68.12.0-4.c.1.1, 408.24.0.?, \ldots
110670.p2 110670.p 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 00 Z/2Z\Z/2\Z 11 [1,0,1,25614,1356764][1, 0, 1, -25614, -1356764] y2+xy+y=x325614x1356764y^2+xy+y=x^3-25614x-1356764 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 68.12.0-4.c.1.2, 204.24.0.?, \ldots
110670.p3 110670.p 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,0,1,24594,1486508][1, 0, 1, -24594, -1486508] y2+xy+y=x324594x1486508y^2+xy+y=x^3-24594x-1486508 2.6.0.a.1, 12.12.0-2.a.1.1, 68.12.0-2.a.1.1, 204.24.0.?, 4340.12.0.?, \ldots
110670.p4 110670.p 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 00 Z/2Z\Z/2\Z 11 [1,0,1,1474,25324][1, 0, 1, -1474, -25324] y2+xy+y=x31474x25324y^2+xy+y=x^3-1474x-25324 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 136.12.0.?, 408.24.0.?, \ldots
110670.q1 110670.q 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 39.1000313039.10003130 [1,0,1,542740380634,153899228797038604][1, 0, 1, -542740380634, -153899228797038604] y2+xy+y=x3542740380634x153899228797038604y^2+xy+y=x^3-542740380634x-153899228797038604 2.3.0.a.1, 60.6.0.c.1, 4216.6.0.?, 63240.12.0.?
110670.q2 110670.q 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 19.5500156519.55001565 [1,0,1,33920426114,2404803762108268][1, 0, 1, -33920426114, -2404803762108268] y2+xy+y=x333920426114x2404803762108268y^2+xy+y=x^3-33920426114x-2404803762108268 2.3.0.a.1, 30.6.0.a.1, 4216.6.0.?, 63240.12.0.?
110670.r1 110670.r 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 2.4042168112.404216811 [1,0,1,743879,246883502][1, 0, 1, -743879, 246883502] y2+xy+y=x3743879x+246883502y^2+xy+y=x^3-743879x+246883502 2.3.0.a.1, 476.6.0.?, 620.6.0.?, 73780.12.0.?
110670.r2 110670.r 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 1.2021084051.202108405 [1,0,1,46379,3874502][1, 0, 1, -46379, 3874502] y2+xy+y=x346379x+3874502y^2+xy+y=x^3-46379x+3874502 2.3.0.a.1, 238.6.0.?, 620.6.0.?, 73780.12.0.?
110670.s1 110670.s 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 1.2047868111.204786811 [1,0,1,7379,195748][1, 0, 1, -7379, -195748] y2+xy+y=x37379x195748y^2+xy+y=x^3-7379x-195748 2.3.0.a.1, 476.6.0.?, 744.6.0.?, 88536.12.0.?
110670.s2 110670.s 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 0.6023934050.602393405 [1,0,1,991,18304][1, 0, 1, 991, -18304] y2+xy+y=x3+991x18304y^2+xy+y=x^3+991x-18304 2.3.0.a.1, 238.6.0.?, 744.6.0.?, 88536.12.0.?
110670.t1 110670.t 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 1.4480370841.448037084 [1,0,1,493139,117685226][1, 0, 1, -493139, 117685226] y2+xy+y=x3493139x+117685226y^2+xy+y=x^3-493139x+117685226 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 28.12.0-4.c.1.1, 168.24.0.?, \ldots
110670.t2 110670.t 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 0.7240185420.724018542 [1,0,1,124239,14971214][1, 0, 1, -124239, -14971214] y2+xy+y=x3124239x14971214y^2+xy+y=x^3-124239x-14971214 2.6.0.a.1, 12.12.0-2.a.1.1, 28.12.0-2.a.1.1, 84.24.0.?, 10540.12.0.?, \ldots
110670.t3 110670.t 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 1.4480370841.448037084 [1,0,1,120319,16073518][1, 0, 1, -120319, -16073518] y2+xy+y=x3120319x16073518y^2+xy+y=x^3-120319x-16073518 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 56.12.0-4.c.1.5, 168.24.0.?, \ldots
110670.t4 110670.t 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 11 Z/2Z\Z/2\Z 1.4480370841.448037084 [1,0,1,181941,77064518][1, 0, 1, 181941, -77064518] y2+xy+y=x3+181941x77064518y^2+xy+y=x^3+181941x-77064518 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 28.12.0-4.c.1.2, 84.24.0.?, \ldots
110670.u1 110670.u 23571731 2 \cdot 3 \cdot 5 \cdot 7 \cdot 17 \cdot 31 00 Z/2Z\Z/2\Z 11 [1,0,1,1239284,531114418][1, 0, 1, -1239284, -531114418] y2+xy+y=x31239284x531114418y^2+xy+y=x^3-1239284x-531114418 2.3.0.a.1, 186.6.0.?, 476.6.0.?, 44268.12.0.?
Next   displayed columns for results