Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-809288x-304277136\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-809288xz^2-304277136z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-65552355x-222014689182\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(1676, 55176)$ | $0.73764551741035034915616153616$ | $\infty$ |
$(10796, 1117656)$ | $3.2997676719323865169890370591$ | $\infty$ |
$(1049, 0)$ | $0$ | $2$ |
Integral points
\( \left(1049, 0\right) \), \((1410,\pm 36822)\), \((1676,\pm 55176)\), \((1874,\pm 68970)\), \((2924,\pm 149400)\), \((5020,\pm 349448)\), \((7946,\pm 703494)\), \((10796,\pm 1117656)\), \((48701,\pm 10745526)\), \((389580,\pm 243160632)\)
Invariants
Conductor: | $N$ | = | \( 110352 \) | = | $2^{4} \cdot 3 \cdot 11^{2} \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $-6144834207024488448$ | = | $-1 \cdot 2^{13} \cdot 3^{2} \cdot 11^{6} \cdot 19^{6} $ |
|
j-invariant: | $j$ | = | \( -\frac{8078253774625}{846825858} \) | = | $-1 \cdot 2^{-1} \cdot 3^{-2} \cdot 5^{3} \cdot 19^{-6} \cdot 4013^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.3441704531892059872821475405$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.45207563623007540583394363006$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0101536552434738$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.529314168504708$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.4312325894980641889064392151$ |
|
Real period: | $\Omega$ | ≈ | $0.079118353551072036519486773257$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 192 $ = $ 2^{2}\cdot2\cdot2^{2}\cdot( 2 \cdot 3 ) $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $9.2330457398782190237664943387 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 9.233045740 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.079118 \cdot 2.431233 \cdot 192}{2^2} \\ & \approx 9.233045740\end{aligned}$$
Modular invariants
Modular form 110352.2.a.o
For more coefficients, see the Downloads section to the right.
Modular degree: | 2488320 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{5}^{*}$ | additive | -1 | 4 | 13 | 1 |
$3$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$11$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$19$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.6.0.5 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 5016 = 2^{3} \cdot 3 \cdot 11 \cdot 19 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 911 & 0 \\ 0 & 5015 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 1673 & 924 \\ 4642 & 529 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 4966 & 5007 \end{array}\right),\left(\begin{array}{rr} 3202 & 2739 \\ 2937 & 1816 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2377 & 924 \\ 4686 & 529 \end{array}\right),\left(\begin{array}{rr} 5005 & 12 \\ 5004 & 13 \end{array}\right),\left(\begin{array}{rr} 4806 & 3047 \\ 2299 & 1462 \end{array}\right)$.
The torsion field $K:=\Q(E[5016])$ is a degree-$1248141312000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/5016\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 121 = 11^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 1936 = 2^{4} \cdot 11^{2} \) |
$11$ | additive | $62$ | \( 912 = 2^{4} \cdot 3 \cdot 19 \) |
$19$ | split multiplicative | $20$ | \( 5808 = 2^{4} \cdot 3 \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 110352.o
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 114.c2, its twist by $44$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-33}) \) | \(\Z/6\Z\) | not in database |
$4$ | 4.2.3145032.3 | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-2}, \sqrt{-33})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.2.20120120064.2 | \(\Z/6\Z\) | not in database |
$8$ | 8.0.633038481985536.65 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.633038481985536.49 | \(\Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$18$ | 18.0.13520606667718311912366086314163104199252901888.2 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | nonsplit | ss | ord | add | ord | ord | split | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 4 | 2,4 | 2 | - | 2 | 2 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
$\mu$-invariant(s) | - | 1 | 0,0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.