sage:E = EllipticCurve("c1")
E.isogeny_class()
sage:E.rank()
The elliptic curves in class 109263c have
rank 2.
|
Bad L-factors: |
Prime |
L-Factor |
3 | 1+T |
7 | 1−T |
11 | 1 |
43 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
2 |
1+T+2T2 |
1.2.b
|
5 |
1+2T+5T2 |
1.5.c
|
13 |
1+13T2 |
1.13.a
|
17 |
1+T+17T2 |
1.17.b
|
19 |
1+5T+19T2 |
1.19.f
|
23 |
1+6T+23T2 |
1.23.g
|
29 |
1−T+29T2 |
1.29.ab
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 109263c do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.
Elliptic curves in class 109263c
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
109263.b2 |
109263c1 |
[1,1,1,36,276] |
3869893/24381 |
−32451111 |
[2] |
26496 |
0.12309
|
Γ0(N)-optimal |
109263.b1 |
109263c2 |
[1,1,1,−459,3246] |
8036054027/815409 |
1085309379 |
[2] |
52992 |
0.46966
|
|