Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-2753x+56513\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-2753xz^2+56513z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-223020x+40528944\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(49, 192)$ | $0.93723068894312098690594815566$ | $\infty$ |
| $(31, 0)$ | $0$ | $2$ |
Integral points
\( \left(31, 0\right) \), \((49,\pm 192)\), \((184,\pm 2397)\)
Invariants
| Conductor: | $N$ | = | \( 1088 \) | = | $2^{6} \cdot 17$ |
|
| Discriminant: | $\Delta$ | = | $606076928$ | = | $2^{21} \cdot 17^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{8805624625}{2312} \) | = | $2^{-3} \cdot 5^{3} \cdot 7^{3} \cdot 17^{-2} \cdot 59^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.66990202457142863218247606498$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.36981874626848933194337211721$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9659043939476677$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.059327504059936$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.93723068894312098690594815566$ |
|
| Real period: | $\Omega$ | ≈ | $1.5894570119840451898798858686$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $2.9793757807745623682423764685 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.979375781 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.589457 \cdot 0.937231 \cdot 8}{2^2} \\ & \approx 2.979375781\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 768 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{11}^{*}$ | additive | 1 | 6 | 21 | 3 |
| $17$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.6.0.6 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 408 = 2^{3} \cdot 3 \cdot 17 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 27 & 88 \\ 398 & 77 \end{array}\right),\left(\begin{array}{rr} 241 & 12 \\ 222 & 73 \end{array}\right),\left(\begin{array}{rr} 397 & 12 \\ 396 & 13 \end{array}\right),\left(\begin{array}{rr} 398 & 405 \\ 231 & 8 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 358 & 399 \end{array}\right),\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 281 & 2 \\ 126 & 13 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[408])$ is a degree-$60162048$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/408\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $4$ | \( 1 \) |
| $17$ | nonsplit multiplicative | $18$ | \( 64 = 2^{6} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 1088.l
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 34.a3, its twist by $8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{2}) \) | \(\Z/2\Z \oplus \Z/6\Z\) | 2.2.8.1-578.1-d6 |
| $4$ | 4.4.9248.1 | \(\Z/4\Z\) | not in database |
| $6$ | 6.0.1154594304.1 | \(\Z/6\Z\) | not in database |
| $8$ | 8.0.1212153856.6 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $8$ | 8.8.5473632256.1 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/6\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $18$ | 18.6.23214739404794772903803486208.1 | \(\Z/2\Z \oplus \Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | ss | ord | ord | ord | nonsplit | ord | ss | ss | ord | ord | ord | ord | ss |
| $\lambda$-invariant(s) | - | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1,1 | 1 | 1 | 1 | 1 | 1,1 |
| $\mu$-invariant(s) | - | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0,0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.