Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-1885802x+997392578\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-1885802xz^2+997392578z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-152749989x+726640939422\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(41623035280351670776583317/99997935878283318461569, 533266254904821610284150458855638296030/31621797507837379386398541485186753)$ | $59.318094636095295149258214770$ | $\infty$ |
$(793, 0)$ | $0$ | $2$ |
Integral points
\( \left(793, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 107648 \) | = | $2^{7} \cdot 29^{2}$ |
|
Discriminant: | $\Delta$ | = | $64031540859008$ | = | $2^{7} \cdot 29^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{9741240402656}{841} \) | = | $2^{5} \cdot 7^{3} \cdot 29^{-2} \cdot 31^{6}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.0898381544756081664523234370$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.0018543841557363890339686833002$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.112874543656756$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.74367724965431$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $59.318094636095295149258214770$ |
|
Real period: | $\Omega$ | ≈ | $0.47514276371244069752770193738$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $14.092281711775211393536506231 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 14.092281712 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.475143 \cdot 59.318095 \cdot 2}{2^2} \\ & \approx 14.092281712\end{aligned}$$
Modular invariants
Modular form 107648.2.a.bp
For more coefficients, see the Downloads section to the right.
Modular degree: | 2096640 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $II$ | additive | 1 | 7 | 7 | 0 |
$29$ | $2$ | $I_{2}^{*}$ | additive | 1 | 2 | 8 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 16.24.0.29 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 928 = 2^{5} \cdot 29 \), index $96$, genus $0$, and generators
$\left(\begin{array}{rr} 883 & 4 \\ 16 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 552 & 515 \\ 217 & 106 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 921 & 8 \\ 920 & 9 \end{array}\right),\left(\begin{array}{rr} 251 & 910 \\ 414 & 223 \end{array}\right),\left(\begin{array}{rr} 7 & 8 \\ 20 & 23 \end{array}\right)$.
The torsion field $K:=\Q(E[928])$ is a degree-$2793799680$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/928\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 841 = 29^{2} \) |
$29$ | additive | $450$ | \( 128 = 2^{7} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 107648j
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 3712p2, its twist by $-232$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.0.430592.2 | \(\Z/4\Z\) | not in database |
$8$ | 8.0.2966551527424.21 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.47464824438784.22 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | ord | ord | ord | ord | ord | ord | ord | ord | add | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 3 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | - | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.