Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2-1175054x+488998073\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z-1175054xz^2+488998073z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-18800859x+31277075830\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(9397, 900381)$ | $5.1998510905161978020244366838$ | $\infty$ |
$(-1251, 625)$ | $0$ | $2$ |
$(597, -299)$ | $0$ | $2$ |
Integral points
\( \left(-1251, 625\right) \), \( \left(597, -299\right) \), \( \left(9397, 900381\right) \), \( \left(9397, -909779\right) \)
Invariants
Conductor: | $N$ | = | \( 106722 \) | = | $2 \cdot 3^{2} \cdot 7^{2} \cdot 11^{2}$ |
|
Discriminant: | $\Delta$ | = | $661850270109741636$ | = | $2^{2} \cdot 3^{8} \cdot 7^{6} \cdot 11^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{1180932193}{4356} \) | = | $2^{-2} \cdot 3^{-2} \cdot 7^{3} \cdot 11^{-2} \cdot 151^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.2796813641302532440863979094$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.44152749113064352619487286977$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9673590594607858$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.624646457261536$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.1998510905161978020244366838$ |
|
Real period: | $\Omega$ | ≈ | $0.28871706113637450074768714280$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 128 $ = $ 2\cdot2^{2}\cdot2^{2}\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $12.010285801604869589812945852 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 12.010285802 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.288717 \cdot 5.199851 \cdot 128}{4^2} \\ & \approx 12.010285802\end{aligned}$$
Modular invariants
Modular form 106722.2.a.gk
For more coefficients, see the Downloads section to the right.
Modular degree: | 2211840 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$3$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
$7$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$11$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 8.12.0.4 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1848 = 2^{3} \cdot 3 \cdot 7 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 263 & 0 \\ 0 & 1847 \end{array}\right),\left(\begin{array}{rr} 925 & 532 \\ 266 & 1065 \end{array}\right),\left(\begin{array}{rr} 1845 & 4 \\ 1844 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1653 & 532 \\ 1064 & 1331 \end{array}\right),\left(\begin{array}{rr} 1413 & 1582 \\ 1610 & 265 \end{array}\right),\left(\begin{array}{rr} 1581 & 1582 \\ 1498 & 265 \end{array}\right)$.
The torsion field $K:=\Q(E[1848])$ is a degree-$40874803200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1848\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 53361 = 3^{2} \cdot 7^{2} \cdot 11^{2} \) |
$3$ | additive | $8$ | \( 11858 = 2 \cdot 7^{2} \cdot 11^{2} \) |
$7$ | additive | $26$ | \( 2178 = 2 \cdot 3^{2} \cdot 11^{2} \) |
$11$ | additive | $72$ | \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 106722hb
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 66b2, its twist by $-231$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$4$ | \(\Q(\sqrt{7}, \sqrt{33})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-2}, \sqrt{-231})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-7}, \sqrt{66})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | 16.0.34822159495883806555961819136.6 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | add | ord | add | add | ord | ord | ord | ord | ord | ss | ord | ord | ord | ord |
$\lambda$-invariant(s) | 6 | - | 1 | - | - | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | - | 0 | - | - | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.